По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сетевая индустрия использует множество терминов и понятий для описания коммутации и маршрутизации, потому что многие термины пересекаются в определениях этих понятий. Это может сбить с толку. Работает ли маршрутизатор маршрутизатором или коммутатором? В чем разница между коммутацией на 3 уровне (L3) и маршрутизацией? Что бы найти ответы на эти вопросы необходимо разобраться, что происходит с пакетом, когда он проходит через сеть. Понимание широковещательных и коллизионных доменов Два основных понятия, которые вы должны понять. Коммутация. Понятие широковещательного домена и домена коллизий На рисунке изображена простая сеть, иллюстрирующая эти два понятия. Домен коллизий определяется как набор хостов, подключенных к сети. В некоторых случаях хосты одновременно не буду передавать пакеты из-за возможного столкновения последних. Например, если Хост А и хост Б соединены прямым проводом, то они не смогут передавать пакеты одновременно. Однако, если между хостами установлено какое-то физическое устройств, то одновременная передача данных возможна, так как они находятся в отдельных доменах коллизий. Широковещательный домен-это набор хостов, которые могут обмениваться данными, просто отправляя данные на 2 уровне(L2). Если узел A посылает широковещательный пакет для всех хостов, по локальной сети, и хост B получает его, эти два хоста находятся в одном широковещательном домене. Широковещательный домен и домен коллизий Мостовое соединение создает домен коллизий, но не широковещательный домен. Традиционная коммутация пакетов и мостовое соединение- технически- это одно и то же. Основное различие заключается в том, что в большинстве коммутируемых сред каждое устройство, подключенное к сети, находится в отдельном домене коллизий. Что же изменяется в формате типичного пакета, когда он проходит через коммутатор? Рисунок не показывает измения в формате пакетов данных прошедших через коммутатор Вообще, устройства по обе стороны от коммутатора не "видят", что между ними есть коммутатор, они также не знают назначения своих пакетов; коммутаторы прозрачны для устройств подключенных к сети. Если узел А хочет отправить пакет на ip-адресс 192.168.1.2 (узел B), он отправляет в эфир широковещательный запрос для всех узлов, подключенных к тому же сегменту сети, запрашивает MAC-адрес хоста с IP-адресом 192.168.1.2 (это называется Address Resolution Protocol (ARP)). Так как узел B находится в том же широковещательном домене, что и узел A, узел A может быть уверен, что узел B получит этот широковещательный запрос и отправит ответный пакет с верным MAC-адресом для обмена пакетами. Широковещательные домены и домены коллизии в маршрутизации Сеть построена на основе маршрутизатора не создает широковещательный домен и домен коллизий данная схема приведена на рисунке: Возникает вопрос, как пакет отправленный с хоста А достигнет хост Б с ip-адресом 192.168.2.1? Хост Ане может отправить широковещательный пакет для обнаружения адреса узла B, поэтому он должен использовать какой-то другой метод чтобы выяснить, как добраться до этого пункта назначения. Откуда узел А знает об этом? Обратите внимание, что после каждого IP-адреса на рисунке выше, есть значение / 24. Это число указывает длину префикса, или количество битов, установленных в маске подсети. Хост А может использовать эту информацию для определения что хост B не находится в том же широковещательном домене (не в том же сегменте), и хост A должен использовать определенный метод маршрутизации для достижения цели, как показано на рисунке ниже. Теперь, когда хост A знает, что хост B не находится в том же широковещательном домене, что и он, он не может отправить широковещательный запрос для получения адреса хоста B. Как, тогда, пакету, отправленному с узла А, добраться до узла B? Отправляя свои пакеты к промежуточному маршрутизатору, Хост A помещает в заголовок пакета IP-адрес хоста B, а также еще MAC-адрес промежуточного маршрутизатора, как показано на рисунке. Узел А помещает MAC-адрес маршрутизатора в заголовок пакета. Маршрутизатор принимает этот пакет, приходящий из сети. Далее маршрутизатор проверяет IP-адрес назначения и определяет, какой наиболее короткий маршрут построить и сравнивает данные из пакета с таблицей маршрутизации (в данном случае сравниваются данные хоста B), и заменяет MAC-адрес правильным MAC-адресом для следующего перехода. Затем маршрутизатор пересылает пакет в другой сегмент, который находится в другом широковещательном домене. Коммутация L3 Коммутация 3 уровня очень похожа на маршрутизацию, как показано на рисунке ниже (обратите внимание, что это то же самое, что изображено на рисунке выше). Это связано с тем, что коммутация 3 уровня является маршрутизируемой; Нет никакой функциональной разницы между коммутацией 3 уровня и маршрутизацией.
img
В этой статье мы расскажем как настроить LACP (Link Aggregation Control Protocol) И PAgP (Port Aggregation Protocol), которые носят гордое название EtherChannels - агрегирование каналов. На самом деле EtherChannel это технология агрегации (объединения) каналов. Это означает, что мы можем объединить несколько линков в один логический, что позволит увеличить пропускную способность между коммутаторами. Пример использования Взглянем на схему ниже: В рамках данной схемы мы имеем серверную инфраструктуру, которая подключена в коммутатору распределения (distribution switch) через свой коммутатор. За коммутатором распределения сидят коммутаторы доступы, за которым расположились пользовательские рабочие станции: Если мы подключим два коммутатор линком в 1ГБ/сек, то потенциально, мы можем столкнуться с проблемой «бутылочного горлышка», то есть узкого места. Тогда пользователи испытают проблемы с доступом к серверной ферме. Используя технологию EtherChannel, мы можем объединить до 8 интерфейсов (физических) в один логический линк (агрегация портов, Port-Channel) и трафик будет распределяться между физическими портами равномерно (балансируя нагрузку). В нашем примере мы объединили 4 (четыре) гигабитных линка между рабочими станциями и серверами в один, с пропускной способностью 4ГБ/сек. Это увеличило общую пропускную способность и добавило отказоустойчивость линков! Не забывайте про STP (Spanning-tree protocol). В случае агрегации портов, мы исключаем STP петли. Режимы EtherChannel Каждый из протоколов LACP или PAgP имеет по 3 режима работы, которые определяют режим его активности (инициализировать ли построение агрегации со своей стороны, или ждать сигнал с удаленной стороны): LACP Modes: ON, ACTIVE, PASSIVE; PAgP Modes: ON, DESIRABLE, AUTO; Давайте посмотрим, в каком из случае будет установлено соединение EtherChannel при различных режимах настройки. Для LACP: Коммутатор №1 Коммутатор №2 Установится ли EtherChannel? ON ON Да ACTIVE ACTIVE/PASSIVE Да ON/ACTIVE/PASSIVE Not configured (off) Нет ON ACTIVE Нет PASSIVE/ON PASSIVE Нет Теперь разберемся с PAgP: Коммутатор №1 Коммутатор №2 Установится ли EtherChannel? ON ON Да DESIRABLE DESIRABLE/AUTO Да ON/DESIRABLE/AUTO Not configured (off) Нет ON DESIRABLE Нет AUTO / ON AUTO Нет Настройка Ок, предположим, что порты с Gi0/0 по Gi0/3 буду использованы для агрегации EtherChannel. Лучше всего настроить логический интерфейс (агрегированный) в качестве транка, чтобы пропускать VLAN между коммутаторами. Поднимаем LACP В нашем случае switch1 будет активном (Active) режиме, а switch2 будет в пассивном (Passive) режиме. switch1(config)# interface range Gi0/0 -3 // выбираем диапазон из 4х интерфейсов; switch1(config-if-range)# channel-protocol lacp // указываем протокол как LACP; switch1(config-if-range)# channel-group 1 mode active // указываем активный режим; switch1(config-if-range)# exit switch1(config)# interface port-channel 1 // конфигурируем логическую сущность как транк; switch1(config-if)#switchport trunk encapsulation dot1q switch1(config-if)#switchport mode trunk switch2(config)# interface range Gi0/0 – 3 // выбираем диапазон из 4х интерфейсов; switch2(config-if-range)# channel-protocol lacp // указываем протокол как LACP; switch2(config-if-range)# channel-group 1 mode passive // указываем пассивный режим; switch2(config-if-range)# exit switch2(config)# interface port-channel 1 // конфигурируем логическую сущность как транк; switch2(config-if)#switchport trunk encapsulation dot1q switch2(config-if)#switchport mode trunk Поднимаем PAgP В этом случае switch1 будет Desirable - режиме, а switch2 будет в автоматическом (Auto) режиме. switch1(config)# interface range Gi0/0 -3 // выбираем диапазон из 4х интерфейсов; switch1(config-if-range)# channel-group 1 mode desirable // указываем desirable режим; switch1(config-if-range)# exit switch1(config)# interface port-channel 1 // конфигурируем логическую сущность как транк; switch1(config-if)#switchport trunk encapsulation dot1q switch1(config-if)#switchport mode trunk switch2(config)# interface range Gi0/0 – 3 // выбираем диапазон из 4х интерфейсов; switch2(config-if-range)# channel-group 1 mode auto // указываем автоматический режим; switch2(config-if-range)# exit switch2(config)# interface port-channel 1 // конфигурируем логическую сущность как транк; switch2(config-if)#switchport trunk encapsulation dot1q switch2(config-if)#switchport mode trunk Полезные команды Вот некоторые команды, которые могут понадобиться вам в работе с EtherChannel: show etherchannel summary show etherchannel 1 port-channel show interfaces etherchannel
img
C появлением термина «виртуализация», множество компаний начали массово мигрировать свой серверный ресурс с аппаратной на виртуальную платформу. В данной статье мы попробуем разобраться, что такое «виртуализация» и какие плюсы она несет в себе. Современному бизнесу ежедневно приходится иметь дело с различными приложениями, будь то сервер CRM, корпоративный каталог (Active Directory) или сервер базы данных и т.д. В 8 из 10 случаев, серверный ландшафт имеет свойства гетерогенной среды, т.е каждое приложение имеет свою собственную операционную систему и нуждается в отдельном сервере. При условии дальнейшего масштабирования предприятия, крайне неэффективно и дорого продолжать закупку серверов. На помощь приходит «виртуальный сервер», или, как чаще говорят – «виртуальная машина». Основной идеей виртуализации является развертывание различных приложений, с разными операционными системами поверх одного физического сервера. В тоже время, все виртуальные машины имеют функционал, аналогичный функционалу при развертывании на аппаратном сервере. Ведущие вендоры в области виртуализации на сегодняшний день, это VMware, Hyper-V и Cirtix. Лидером по разработке виртуальных решений является VMware. Централизованное и удобное управление через VCenter, облегчает работу администратора в несколько раз. У VMware разработан свой гипервизор – ESX(i). Гипервизор (Hypervisor) - важнейший компонент виртуализации, отвечающий за обеспечение существования нескольких виртуальных машин поверх разных операционных систем на одном физическом сервере. На рисунке ниже, схематически изображен принцип виртуализации. Виртуализация серверов от компании Мерион Нетворкс Помимо повышения эффективности использования IT – инфраструктуры, снижения затрат на покупку оборудования и найм персонала, хочется перечислить следующие преимущества виртуализации серверов: Замена аппаратной составляющей на программное обеспечение Незачем тратить юнит в стойке, можно развернуть виртуальную машину. Унификация управления Вы получаете централизованное управление всеми виртуальными серверами, что облегчает деятельность соответствующего персонала. Снижение затрат на электроэнергию и охлаждение серверной комнаты За счет уменьшения единиц серверного оборудование происходит снижение тепловыделения. Консолидация управления операционными системами с помощью гипервизора Возможность проводить апгрейд сервера не затрагивая приложения и не совершая перезагрузку Возможность резервирования и создания отказоустойчивой конфигурации (snapshot) Удобные средства для мониторинга перформансов в реальном времени
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59