По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной главе рассматриваются вопросы технической диагностики системы автоматического мониторинга ВОЛС, необходимость в которой возникает из-за сложности этой системы. Техническое диагностирование - процесс определения технического состояния изделия с определенной точностью. Цель технического диагностирования это поддержание достаточного уровня надежности. При наступлении отказа диагностирование предполагает обнаружение факта отказа и его локализацию. Система технического диагностирования (СТД) - совокупность средств, осуществляющих измерение количественных значений параметров (диагностических параметров ДП), анализ и обработку результатов измерений по установленным алгоритмам. Техническим средством диагностирования являются автоматические измерительные системы, рассмотренные в главе 2. Одним из основных методов решения задач диагностирования является моделирование объекта технического диагностирования и выделение взаимосвязей в этих моделях. Модель объекта - это формализованная сущность, характеризующая определенные свойства реального объекта в удобной и желательно для инженера в наглядной форме. Существуют аналитические модели, в которых модель строится на основе уравнений, связывающих различные параметры; графоаналитические, основанные на представлении диаграмм (в частности направленных графов) прохождения сигналов; информационные модели представляют собой информационные описания в терминах энтропия, информация и т.п. Чаще всего используемым в практических целях и наиболее наглядным являются функционально-логические модели, которые реализуются различными способами, определяемыми особенностью функциональной схемы диагностируемого изделия. В настоящей работе применяется диагностирование, основанное на функционально-логическом моделировании и реализуемое инженерным способом. В соответствии с решаемой задачей выбирается та или иная "функция предпочтения". В данном случае решается задача поиска неисправности, для которой выбирается W4 функция предпочтения о которой ниже. Разработка алгоритма диагностирования Считаем, что объект диагностирования задан следующей функциональной схемой (рисунок 1). После построения функциональной модели необходимо определить множество возможных состояний объекта, который диагностируется. Общее число состояний при N функциональных элементов при двоичных исходах проверок (1 исправно, 0 неисправно) равно при диагностировании системы 2N - 1. Предполагается, что одновременное появление двух независимых отказов маловероятно, поэтому число сочетаний из N элементов по одному, равно N. Число всех возможных различных состояний аппаратуры, которая диагностируется, одновременно с учетом отказов одного функционального - сводятся в таблицу состояний (матрицу исправностей, матрицу неисправностей и т. п.), которая используется при разработке программы (алгоритма) поиска неисправностей. Матрица состояний строится по следующим правилам: S0 - строка, соответствующая работоспособному состоянию; Sj - строка, соответствующая состоянию в котором оказался j-тый элемент модели. Например, состояние S4 = 0 означает событие, при котором отказал 4-ый четвертый элемент модели; S2 = 0- второй и т.п.). Этому событию соответствует недопустимое значение сигнала Zi, и тогда на пересечении пишется 0. Если любой другой i - й элемент также недопустимое значение Zi, то на пересечении j ой строки и Zi - ого столбца таким же образом записывается "0"; при этом, если значение параметра будет находиться в допуске, то на пересечении пишется "1". Считается, что значения всех внешних входных сигналов xi всегда будут находиться в пределах допуска, а линии связи между элементами абсолютно надежны. Если есть сомнение в надежности линии, то её принимают за функциональный элемент. Транспонируем матрицу (таблица 1). Так как мы осуществляем построение алгоритма поиска неисправности, то первую строку S0, означающее исправное состояние исключаем. Последний столбец функция предпочтения W4, которую установили из следующих соображений. Так как матрица заполнена нулями и единицами, то равенство некоторого ij элемента соответствует тому, отказ i-го элемента влияет на j-ый выходной параметр j-го элемента, если контролировать выходной параметр Zj можно определить, в каком именно состоянии находится i-ый элемент. Следовательно, чем больше "0" в строке Zj матрицы, тем более большое количество информации может нести этот параметр о состоянии объекта, который находится под контролем. Для этого в качестве предпочтительной функции решении данной задачи контроля работоспособности необходимо принимать функцию вида: Где ; - означает количество нулей в I-ой строке матрицы. Если для объекта контроля известны вероятности состояний P(Zi): Также заданы C(Zi) стоимости контроля параметров: Так как строится алгоритм нахождения неисправности, то функция предпочтения будет: где суммы означают количество нулей и единиц соответственно в I-той строке транспонированной матрицы состояний. Значения W4(Zi) для каждой строки приведены в последнем столбце транспонированной матрицы (таблица 3.2). Последовательность решения следующая: 1) Выбираем ту строку, в которой функция предпочтения W4(Zi) минимальна, так как эта строка несет максимальное количество информации, разбивая все возможные состояния объекта на две равные части. 2) Минимально значение для 6,7,13 и 14 строк, т.е. по этому критерию они равнозначны. Для контроля выбираем строку 7. Итог контроля по этому параметру W4(Zi) разбивает матрицу на равные части W4(Z7) - первое разложение: 2.1) Эти состояния не влияют на данный выходной параметр функционального элемента; 2.2) Значения параметра не в допуске, что говорит о неисправности объекта. 3) Дальше аналогично анализируются обе получившиеся части (3-е, 4-е и последующие разложения (как показано на рисунке 6). 4) Процедура продолжается, пока множество N=14 возможных состояний объекта диагностирования не будут разделены на отдельные состояния. Чтобы упорядочить для дальнейшего осколки введём следующее обозначение для каждого конкретного осколка: Где m - номер разбиения; "H" - принимает значение 1 или 0 в зависимости от состояния строки матрицы; n - номер осколка, считая, что осколки всегда располагаются, начиная с "1". Например, обозначение 3«0»6 значит, что это осколок при третьем разбиении для значения "0". (впрочем, "1" всегда соответствуют нечетные значения "n", а «0» - четные) Ниже представлены результаты анализа для принятой конкретной функциональной модели на рисунке 3. Первое разбиение по строке Z7, имеющая W7 = 0 z7, имеющая W7 = 0 В таблице 3.3. представлена матрица (осколок) после первого разбиения для результатов проверки «1», т.е. при введенных обозначениях: 1«1»1. Для второго разбиения взята строка Z11, имеющая меньшее значение функции предпочтения W4 = 1 В таблице 3.4 представлена таблица после первого разбиения с «0»,, т.е. 1«0»,1. Дальше "заливкой" показаны строчки, выбранные для следующих разбиений. Для первого разбиения матрицы взята строка Z11, функция предпочтения которой W4 = 1. S8 S9 S10 S11 S12 S13 S14 W4 z8 0 1 1 1 1 1 1 5 z9 1 0 1 1 1 1 1 5 z10 1 1 0 1 1 1 1 5 z11 1 1 0 0 0 1 1 1 z12 1 1 0 0 0 1 1 1 z13 1 1 0 0 0 0 1 1 z14 1 1 0 0 0 1 0 1 Таблица 3. - 1«1»1 S1 S2 S3 S4 S5 S6 S7 W4 z1 0 1 1 1 1 1 1 5 z2 0 0 0 1 1 1 1 1 z3 1 1 0 1 1 1 1 1 z4 1 1 0 0 0 1 1 1 z5 1 1 0 0 0 1 1 3 z6 1 1 0 0 0 0 1 7 z7 1 1 0 0 0 1 0 7 Таблица 4. - 1«0»1 Матрица после второго разбиения при «1». Для 3-го разбиения взята строка Z13 Результаты третьего разбиения: Результаты четвертого разбиения: По результатам разбиений получаем номера ФБ для контроля: результат третьего разбиения: 3«0»2→13; 3«1»4→11 и 12; 3«0»4→10; 3 «1»5→6 и 7; 3«0»6→5; 3 «1»7→4. Результат четвертого разбиения: 4«0»2 → 9. Результат пятого разбиения: 5«1»1 → 8; 5«0» →14; 5«1»15 → 2 и 3; 5«0»16 →1. По полученным в результате анализа матрицы состояний номерам контролируемых ФБ для определения неисправного блока строим алгоритм контроля. Алгоритм контроля Рисунок 2. Как видно из алгоритма, максимальное количество элементарных проверок для нахождения неисправного ФБ равно 5 (в данном случае ФБ 8 и 14) Заключение 1.На основе функционально-логической модели и инженерного способа разработан оптимальный алгоритм диагностирования гипотетической систем, которая моделирует систему автоматического контроля и мониторинга. 2. Проведен расчет и в результате получен алгоритм. Для принятой модели максимальное число элементарных испытаний равно 5.
img
Пользователи Linux создают разделы для эффективной организации своих данных. Разделы Linux могут быть удалены так же просто, как и созданы, чтобы переформатировать устройство хранения и освободить место для хранения. Удалить раздел в Linux Для удаления раздела в Linux необходимо выбрать диск, содержащий раздел, и использовать утилиту командной строки fdisk для его удаления. Примечание. Утилита командной строки fdisk - это текстовый манипулятор таблицы разделов. Она используется для разделения и перераспределения устройств хранения. Шаг 1. Составьте список схемы разделов Перед удалением раздела выполните следующую команду, чтобы просмотреть схему разделов. fdisk -l В нашем случае терминал распечатывает информацию о двух дисках: /dev/sda и /dev/sdb. Диск /dev/sda содержит операционную систему, поэтому его разделы удалять не следует. На диске /dev/sdb есть раздел /dev/sdb1, который мы собираемся удалить. Примечание. Число 1 в /dev/sdb1 указывает номер раздела. Запишите номер раздела, который вы собираетесь удалить. Шаг 2: Выберите диск Выберите диск, содержащий раздел, который вы собираетесь удалить. Общие имена дисков в Linux включают: Тип диска Имена дисков Обычно используемые имена дисков IDE /dev/hd[a-h] /dev/hda, /dev/hdb SCSI /dev/sd[a-p] /dev/sda, /dev/sdb ESDI /dev/ed[a-d] /dev/eda XT /dev/xd[ab] /dev/xda Чтобы выбрать диск, выполните следующую команду: sudo fdisk /dev/sdb Шаг 3: удалить разделы Перед удалением раздела сделайте резервную копию своих данных. Все данные автоматически удаляются при удалении раздела. Чтобы удалить раздел, выполните команду d в утилите командной строки fdisk. Раздел выбирается автоматически, если на диске нет других разделов. Если диск содержит несколько разделов, выберите раздел, введя его номер. Терминал распечатает сообщение, подтверждающее, что раздел удален. Примечание. Если вы хотите удалить несколько разделов, повторите этот шаг столько раз, сколько необходимо. Шаг 4: проверьте удаление раздела Перезагрузите таблицу разделов, чтобы убедиться, что раздел был удален. Для этого запустите команду p. Терминал выведет структуру разделов диска, выбранного на шаге 2. Шаг 5. Сохраните изменения и выйдите Запустите команду w, чтобы записать и сохранить изменения, внесенные на диск.
img
Управление кэш-памятью определяет поведение кэширования для веб-сайта, давая браузерам понять, как часто следует обновлять локально хранящиеся ресурсы. Что такое cache-control? Cache-control – это HTTP-заголовок, который определяет поведение браузера при кэшировании. Проще говоря, когда кто-то посещает веб-сайт, то его браузер сохраняет определенные ресурсы, такие как изображения и данные веб-сайта, в хранилище, которое называется кэш. Когда пользователь вновь посещает этот веб-сайт, то cache-control диктует правила, которые определяют, будут ли эти ресурсы загружены из локального кэша данного пользователя, или браузер должен отправить запрос на сервер для получения новых ресурсов. Для более глубокого понимания, что такое cache-control необходимо базовое понимание того, что такое кэширование в браузере и что такое HTTP-заголовки. Что такое кэширование в браузере? Как уже было описано выше, кэширование в браузере – это когда веб-браузер сохраняет ресурсы веб-сайта, чтобы не запрашивать их вновь с сервера. Например, фоновое изображение веб-сайта может быть сохранено локально в кэше, чтобы при повторном посещении пользователем данного веб-сайта изображение загружалось из локальных файлов пользователя, и тем самым страница загружалась бы быстрее. Браузеры хранят эти ресурсы в течение определенного периода времени, известного как время жизни информации (TTL - Time To Live). Если пользователь запросит кэшированный ресурс после истечения TTL, то браузеру придется снова обратиться к серверу, чтобы загрузить новую копию ресурса. Как браузеры и веб-серверы узнают TTL для каждого ресурса? Вот здесь в игру вступают HTTP-заголовки. Что такое HTTP-заголовки? Протокол передачи гипертекста (HTTP - Hypertext Transfer Protocol) представляет собой синтаксис для обмена данными во Всемирной паутине, и этот обмен данными состоит из запросов от клиентов к серверам и ответов от серверов к клиентам. Каждый из HTTP-запросов и ответов содержит ряд пар «ключ-значение», которые называют заголовками. Заголовки содержат большое количество важной информации о каждом сообщении. Например, заголовок запроса обычно содержит: Информацию о том, какой ресурс запрашивается Информацию о том, какой браузер использует клиент Информацию о том, какие форматы данных примет клиент Заголовки ответов обычно содержат информацию о: Успешности выполнения запроса Языке и формате любых ресурсов в теле ответа Заголовок cache-control может использоваться как в HTTP-запросах, так и в HTTP-ответах. Что находится внутри заголовка cache-control? Заголовки состоят из пар «ключ-значение», разделенных двоеточием. Для cache-control «ключ», или часть слева от двоеточия, - это всегда «cache-control». «Значение» - это то, что находится справа от двоеточия. Значений для cache-control может быть несколько, или оно может быть одно. Если их несколько, то они разделяются запятыми. Эти значения называются директивами, и они определяют, кто может кэшировать ресурс, а также как долго эти ресурсы могут быть кэшированными, прежде чем их необходимо будет обновить. Давайте рассмотрим несколько наиболее распространенных директив cache-control: cache-control: private Ответ с директивой private может быть кэширован только клиентом, но никак не посредником, таким как CDN или прокси-сервером. Часто сюда относятся ресурсы, которые содержат личные данные, например, веб-сайт, отображающий личную информацию пользователя. cache-control: public Здесь наоборот, директива public говорит о том, что ресурс может хранится в любом кэше. cache-control: no-store Ответ с директивой no-store нельзя кэшировать нигде и никогда. Это означает, что при каждом запросе пользователем этих данных, требуется отправить запрос на исходный сервер для их получения. Эта директива, как правило, используется для ресурсов, содержащих конфиденциальные данные, например, информацию о банковском счете. cache-control: no-cache Эта директива означает, что кэшированные версии запрошенного ресурса нельзя использовать без предварительной проверки наличия обновленной версии. Обычно это делается с помощью ETag. ETag – это еще один HTTP-заголовок, который содержит маркер, уникальный для версии ресурса на момент его запроса. Этот маркер меняется на исходном сервере при каждом обновлении ресурса. Когда пользователь возвращается на страницу с ресурсом под директивой no-cache, клиенту всегда придется подключаться к исходному серверу и сравнивать ETag на кэшированном ресурсе с ETag на сервере. Если они совпадают, то кэшированный ресурс предоставляется пользователю. В противном случае, это означает, что ресурс был обновлен, и клиенту необходимо загрузить обновленную версию, чтобы иметь возможность предоставить его пользователю. Этот процесс гарантирует, что пользователь всегда будет получать самую последнюю версию ресурса без ненужных постоянных загрузок. cache-control: max-age Эта директива определяет время жизни информации, или, иными словами, сколько секунд ресурс может находиться в кэше после его загрузки. Например, если max-age установлен на 1800, то это значит, что в течение 1800 секунд (30 минут) после того, как ресурс был впервые запрошен с сервера, пользователю будет предоставляться кэшированная версия этого ресурса при последующих запросах. Если пользователь запросит этот ресурс снова по истечении этих 30 минут, то клиенту необходимо будет запросить новую копию с исходного сервера. Директива s-maxage предназначена специально для общих кэшей, таких как CDN. Она определяет, как долго эти общие кэши могут продолжать обслуживать ресурс из кэша. Эта директива отменяет действие директивы max-age для некоторых клиентов. Почему cache-control так важен? Кэширование в браузере – это отличный способ сохранить ресурсы и, тем самым, улучшить процесс взаимодействия с пользователем в Интернете, но без cache-control этот процесс не был бы столь надежным. Все ресурсы на всех сайтах будут использовать одни и те же правила кэширования, а это значит, что конфиденциальная информация будет кэшироваться также, как и общедоступная информация, а ресурсы, которые часто обновляются, будут кэшироваться на то же время, что и ресурсы, которые редко обновляются. Cache-control добавляет гибкости, которая делает кэширование в браузере действительно полезным, позволяя разработчикам определять, как будет кэшироваться каждый ресурс. Этот заголовок также позволяет разработчикам устанавливать определенные правила для посредников, что является причиной, по которой сайты, которые используют CDN, как правило, работают лучше, чем сайты, которые этого не делают.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59