По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Потеря пакетов, джиттер, задержка – все эти страшные слова напрямую зависят от производительности корпоративной сети передачи данных и влияют на работу VoIP (Voice over IP) сервисов, таких как корпоративная IP – АТС и распространение телефонного трафика в целом. В этой статьей мы хотим рассказать про несколько бесплатных инструментов, которые помогут вам проанализировать слабые места в производительности сетевой инфраструктуры, для подготовки инсталляции IP – АТС, или траблшутинге. Wireshark Пожалуй, одним из самых популярных приложений для анализа трафика является Wireshark. Приложение позволит досконально изучить каждый пакет согласно всем семи уровням модели OSI, фильтровать трафик по протоколам, воспроизводить наглядные «SIP Call Flow» для траблшутинга. Как говорится, «маст хэв» :) SIPp Безусловно прекрасная утилита для проведения нагрузочного тестирования. Являясь «Open-Source» решением, приложение генерирует SIP INVITE/BYE с отправкой RTP потоков в единицу времени. SIPp используется для тестирования SIP – прокси, медиа – серверов, шлюзов и IP – АТС. Если вы планируете внедрение IP - АТС и не уверены, что корректно подобрали сервер для ее установки, то элегантным решение будет провести нагрузочное тестирование с помощью указанного ПО. SIPVicious Отличный инструмент в «правильных» руках. Дело в том, что многие хакеры используют данное ПО для взлома VoIP систем (в частности, PBX). SIPVicious состоит из следующих компонентов: svmap - сканнер SIP устройств (именно устройства). Задается IP – диапазон (например, 192.168.1.1 - 192.168.1.254) в рамках которого, «тулза» ищет SIP устройства; svwar - сканирует внутренние номера на корпоративной PBX; svcrack - самая важный инструмент – данное ПО занимается взломом паролей; Слабые пароли в SIP – это очень плохо. А особенно, если слабые пароли составлены только из цифр (без буквенных символов). В таблице ниже предоставлена корреляция длины такого пароля по времени взлома: Длина пароля (в цифрах) Диапазон значений Время на взлом 4 0000-9999 142 секунды 5 00000-99999 23 минуты 48 секунд 6 000000-999999 3 часа 54 минуты 7 0000000-9999999 1 день 14 часов 24 минуты 8 00000000-99999999 16 дней 2 часа 24 минуты Приучайте своих юзеров к паролям длиной не меньше 32 символов с криптостойкостью. Sipper А вот это пункт будет полезен, если вы разрабатываете свое собственное SIP – приложение. SIPr (звучит как Sipper) это один из самых гибких или настраиваемых фреймворков для разработки в мире. Если хотите прикрутить к своему приложению SIP – стек – обратите внимание на это ПО, SIPsak Этот инструмент будет полезен как разработчикам, так и администраторам систем. С помощью него можно проверять такие параметры как: Отправка сообщений SIP OPTIONS; Трассировка; Отправка текстовых файлов (который содержат SIP – запросы); Нагрузочный тест (флудом); Инициация тестовых вызовов; Нам будет интересно узнать, а какими VoIP инструментами пользуетесь Вы?
img
В одном из прошлых статей мы рассмотрели способы фильтрации маршрутов для динамического протокола маршрутизации EIGRP. Следует отметить, что EIGRP проприетарная разработка Cisco, но уже открыта другим производителям. OSPF же протокол открытого стандарта и поддерживается всем вендорами сетевого оборудования. Предполагается, что читатель знаком с данным протоколом маршрутизации и имеет знания на уровне CCNA. OSPF тоже поддерживает фильтрацию маршрутов, но в отличии от EIGRP, где фильтрацию можно делать на любом маршрутизаторе, здесь она возможна только на пограничных роутерах, которые называются ABR (Area Border Router) и ASBR (Autonomous System Boundary Router). Причиной этому является логика анонсирования маршрутов в протоколе OSPF. Не вдаваясь в подробности скажу, что здесь маршруты объявляются с помощью LSA (Link State Advertisement). Существует 11 типов LSA, но рассматривать их мы не будем. По ходу статьи рассмотрим только Type 3 LSA и Type 5 LSA. LSA третьего типа создаются пограничными роутерами, которые подключены к магистральной области (backbone area) и минимум одной немагистральной. Type 3 LSA также называются Summary LSA. С помощью данного типа LSA ABR анонсирует сети из одной области в другую. В таблице базы данных OSPF они отображается как Summary Net Link States: Фильтрация LSA третьего типа говорит маршрутизатору не анонсировать сети из одной области в другую, тем самым закрывая доступ к сетям, которые не должны отображаться в других областях. Видео: протокол OSPF (Open Shortest Path First) за 8 минут Для настройки фильтрации применяется команда area area-num filter-list prefix prefix-list-name {in | out} в интерфейсе конфигурации OSPF. Как видно, здесь применяются списки префиксов или prefix-list, о которых мы говорили в предыдущей статье. Маршрут не анонсируется если попадает под действие deny в списке префиксов. Камнем преткновения в данной команде являются ключевые слова in и out. Эти параметры определяют направление фильтрации в зависимости от номера области, указанного в команде area are-num filter. А работают они следующим образом: Если прописано слово in, то маршрутизатор предотвращает попадание указанных сетей в область, номер которого указан в команде. Если прописано слово out, то маршрутизатор фильтрует номера сетей, исходящих из области, номер которого указан в команде. Схематически это выглядит так: Команда area 0 filter-list in отфильтрует все LSA третьего типа (из областей 1 и 2), и они не попадут в area 0. Но в area 2 маршруты в area 1 попадут, так как нет команд вроде area 2 filter-list in или area 1 filter-list out. Вторая же команда: area 2 filter-list out отфильтрует все маршруты из области 2. В данном примере маршрутная информация из второй области не попадёт ни в одну из областей. В нашей топологии, показанной на рисунке, имеются две точки фильтрации, то есть два пограничных маршрутизатора: При чем каждый из этих маршрутизаторов будет фильтровать разные сети. Также мы здесь используем обе ключевых слова in и out. На ABR1 напишем следующие prefix-list-ы: ip prefix-list FILTER-INTO-AREA-34 seq 5 deny 10.16.3.0/24 ip prefix-list FILTER-INTO-AREA-34 seq 10 permit 0.0.0.0/0 le 32 А на ABR2 ip prefix-list FILTER-OUT-OF-AREA-0 seq 5 deny 10.16.2.0/23 ge 24 le 24 ip prefix-list FILTER-OUT-OF-AREA-0 seq 10 permit 0.0.0.0/0 le 32 Теперь проверив таблицу маршрутизации на R3, увидим, что маршрут до сети 10.16.3.0 отсутствует: Теперь поясним, что мы сказали маршрутизатору. В конфигурации ABR1 первый prefix-list с действием deny совпадет только с маршрутом, который начинается на 10.16.3.0, а длина префикса равна 24. Второй же префикс соответствует всем остальным маршрутам. А командой area 34 filter-list prefix FILTER-INTO-AREA-34 in сказали отфильтровать все сети, которые поступают в 34 область. Поэтому в базе OSPF маршрута в сеть 10.16.3 через R1 не будет. На втором же маршрутизаторе пошли другим путём. Первый команда ip prefix-list FILTER-OUT-OF-AREA-0 seq 5 deny 10.16.2.0/23 ge 24 le 24 совпадет с маршрутами, который начинается на 10.16.2.0 и 10.16.3.0, так как указан /23. На языке списка префиксов означает взять адреса, которые могут соответствовать маске 255.255.254.0, а длина префикса адреса равна 24. А командой area 0 out сказали отфильтровать все LSA 3 типа, которые исходят из области 0. На первый взгляд кажется сложным, но если присмотреться, то все станет ясно. Фильтрация маршрутов в OSPF через distribute-list Фильтрация LSA третьего типа не всегда помогает. Представим ситуацию, когда в какой-то области 50 маршрутизаторов, а нам нужно чтобы маршрутная информация не попала в таблицу только 10 роутеров. В таком случае фильтрация по LSA не поможет, так как он фильтрует маршрут исходящий или входящий в область, в нашем случае маршрут не попадёт ни на один маршрутизатор, что противоречит поставленной задаче. Для таких случаев предусмотрена функция distribute-list. Она просто не добавляет указанный маршрут в таблицу маршрутизации, но в базе OSPF маршрут до сети будет. В отличии от настройки distribute-list в EIGRP, в OSPF нужно учесть следующие аспекты: Команда distribute-list требует указания параметров in | out, но только при применении in фильтрация будет работать. Для фильтрации команда может использовать ACL, prefix-list или route-map. Можно также добавить параметр interface interface-type-number, чтобы применить фильтрацию для конкретного интерфейса. Внесем некоторые изменения в конфигурацию маршрутизатора R3, чтобы отфильтровать маршрут до сети 10.16.1.0: Как видно на выводе, до применения prefix-list-а, в таблице маршрутизации есть маршрут до сети 10.16.1.0. Но после внесения изменений маршрут исчезает из таблицы, но вывод команды show ip ospf database | i 10.16.1.0 показывает, что в базе OSPF данный маршрут существует. Фильтрация маршрутов на ASBR Как уже было сказано в начале материала, ASBR это маршрутизатор, который стоит между двумя разными автономными системами. Именно он генерирует LSA пятого типа, которые включают в себя маршруты в сети, находящиеся вне домена OSPF. Топология сети показана ниже: Конфигурацию всех устройств из этой статьи можно скачать в архиве по ссылке ниже. Скачать конфиги тестовой лаборатории Как видно из рисунка, у нас есть два разных домена динамической маршрутизации. На роутере ASBR настроена редистрибюция маршрутов, то есть маршруты из одно домена маршрутизации попадают во второй. Нам нужно отфильтровать маршруты таким образом, чтобы сети 172.16.101.0/24 и 172.16.102.0/25 не попали в домен EIGRP. Все остальные, включая сети точка-точка, должны быть видны для пользователей в сети EIGRP. Для фильтрации Cisco IOS нам дает всего один инструмент route-map. О них мы подробно рассказывали в статье и фильтрации маршрутов в EIGRP. Можно пойти двумя путями. Либо запрещаем указанные маршруты, в конце добавляем route-map с действием permit, который разрешит все остальные, либо разрешаем указанным в списке префиксов маршруты, а все остальное запрещаем (имейте ввиду, что в конце любого route-map имеется явный запрет deny). Покажем второй вариант, а первый можете протестировать сами и поделиться результатом. Для начала создаем списки префиксов с разрешёнными сетями: ip prefix-list match-area0-permit seq 5 permit 172.16.14.0/30 ip prefix-list match-area0-permit seq 10 permit 172.16.18.0/30 ip prefix-list match-area0-permit seq 15 permit 172.16.8.1/32 ip prefix-list match-area0-permit seq 20 permit 172.16.4.1/32 ip prefix-list match-area0-permit seq 25 permit 172.16.48.0/25 ip prefix-list match-area0-permit seq 30 permit 172.16.49.0/25 ip prefix-list match-area3-permit seq 5 permit 172.16.103.0/24 ge 26 le 26 Еще раз отметим, что фильтрация LSA Type 5 делается только на ASBR маршрутизаторе. До внесения изменений на маршрутизаторе R1 видны сети до 101.0 и 102.0: Применим изменения на ASBR: Проверим таблицу маршрутизации R1 еще раз: Как видим, маршруты в сеть 101.0 и 102.0 исчезли из таблицы. На этом, пожалуй, завершим это материал. Он и так оказался достаточно большим и сложным. Удачи в экспериментах!
img
Архитектуры х64 и х86 являются одними из наиболее широко используемых типов архитектур системы команд (АСК или ISA – Instruction Set Architecture), созданными Intel и AMD. ISA определяет поведение машинного кода и то, как программное обеспечение управляет процессором. ISA – это аппаратный и программный интерфейс, определяющий, что и как может делать ЦП. Прочитав эту статью, вы узнаете разницу между архитектурами х64 и х86. Что из себя представляет архитектура х86? х86 – это тип ISA для компьютерных процессоров, разработанный Intel в 1978 году. Архитектура х86 основана на микропроцессоре Intel 8086 (отсюда и название) и его модификации 8088. Изначально это была 16-битная система команд для 16-битных процессоров, а позже она выросла до 32-битной системы команд. Количество битов показывает, сколько информации ЦП может обработать за цикл. Так, например, 32-разрядный ЦП передает 32 бита данных за тактовый цикл. Благодаря своей способности работать практически на любом компьютере, от обычных ноутбуков до домашних ПК и серверов, архитектура х86 стала достаточно популярной среди многих производителей микропроцессоров. Наиболее значительным ограничением архитектуры х86 является то, то она может обрабатывать максимум 4096 Мб ОЗУ. Поскольку общее количество поддерживаемых комбинаций равно 232 (4 294 967 295), то 32-разрядный процессор имеет 4,29 миллиарда ячеек памяти. В каждой ячейке хранится 1 байт данных, а в сумме это примерно 4 Гб доступной памяти. На сегодняшний день термин х86 обозначает любой 32-разрядный процессор, способный выполнять систему команд х86. Что из себя представляет архитектура х64? х64 (сокращение от х86-64) – это архитектура системы команд, расширенная до 64-битного кода. В ее основе лежит архитектура х86. Впервые она была выпущена в 2000 году. Она представляла два режима работы – 64-битный режим и режим совместимости, который позволяет пользователям запускать 16-битные и 32-битные приложения. Поскольку вся система команд х86 остается в х64, то старые исполняемые файлы работают практически без потери производительности. Архитектура х64 поддерживает гораздо больший объем виртуальной и физической памяти, чем архитектура х86. Это позволяет приложениям хранить в памяти большие объемы данных. Кроме того, х64 увеличивает количество регистров общего назначения до 16, обеспечивая тем самым дополнительную оптимизацию использования и функциональность. Архитектура х64 может использовать в общей сложности 264 байта, что соответствует 16 миллиардам гигабайт (16 эксабайт) памяти. Гораздо большее использование ресурсов делает эту архитектуру пригодной для обеспечения работы суперкомпьютеров и машин, которым требуется доступ к огромным ресурсам. Архитектура х64 позволяет ЦР обрабатывать 64 бита данных за тактовый цикл, что намного больше, чем может себе позволить архитектура х86. х86 VS х64 Несмотря на то, что оба эти типа архитектуры основаны на 32-битной системе команд, некоторые ключевые отличия позволяют их использовать для разных целей. Основное различие между ними заключается в количестве данных, которые они могут обрабатывать за каждый тактовый цикл, и в ширине регистра процессора. Процессор сохраняет часто используемые данные в регистре для быстрого доступа. 32-разрядный процессор на архитектуре х86 имеет 32-битные регистры, а 64-разрядный процессор – 64-битные регистры. Таким образом, х64 позволяет ЦП хранить больше данных и быстрее к ним обращаться. Ширина регистра также определяет объем памяти, который может использовать компьютер. В таблице ниже продемонстрированы основные различия между системами команд архитектур х86 и х64. ISA х86 х64 Выпущена Выпущена в 1978 году Выпущена в 2000 году Создатель Intel AMD Основа Основана на процессоре Intel 8086 Создана как расширение архитектуры х86 Количество бит 32-битная архитектура 64-битная архитектура Адресное пространство 4 ГБ 16 ЭБ Лимит ОЗУ 4 ГБ (фактически доступно 3,2 ГБ) 16 миллиардов ГБ Скорость Медленная и менее мощная в сравнении с х64 Позволяет быстро обрабатывать большие наборы целых чисел; быстрее, чем х86 Передача данных Поддерживает параллельную передачу только 32 бит через 32-битную шину за один заход Поддерживает параллельную передачу больших фрагментов данных через 64-битную шину данных Хранилище Использует больше регистров для разделения и хранения данных Хранит большие объемы данных с меньшим количеством регистров Поддержка приложения Нет поддержки 64-битных приложений и программ. Поддерживает как 64-битные, так и 32-битные приложения и программы. Поддержка ОС Windows XP, Vista, 7, 8, Linux Windows XP Professional, Windows Vista, Windows 7, Windows 8, Windows 10, Linux, Mac OS   Функции Каждая архитектура системы команд имеет функции, которые ее определяют и дают некоторые преимущества в тех или иных вариантах использования. Следующие списки иллюстрируют функции х64 и х86: х86 Использует сложную архитектуру со сложным набором команд (CISC-архитектуру). Сложные команды требуют выполнения нескольких циклов. х86 имеет больше доступных регистров, но меньше памяти. Разработана с меньшим количеством конвейеров обработки запросов, но может обрабатывать сложные адреса. Производительность системы оптимизируется с помощью аппаратного подхода – х86 использует физические компоненты памяти для компенсации нехватки памяти. Использует программную технологию DEP (Data Execution Prevention – Предотвращение выполнения кода). х64 Имеет возможность обработки 64-битных целых чисел с преемственной совместимость для 32-битных приложений. (Теоретическое) виртуальное адресное пространство составляет 264 (16 эксабайт). Однако на сегодняшний день в реальной практике используется лишь небольшая часть из теоретического диапазона в 16 эксабайт – около 128 ТБ. х64 обрабатывает большие файлы, отображая весь файл в адресное пространство процессора. Быстрее, чем х86, благодаря более быстрой параллельной обработке, 64-битной памяти и шине данных, а также регистрам большего размера. Поддерживает одновременную работу с большими файлами в нескольких адресных пространствах. Кроме того, х64 одновременно эмулирует две задачи х86 и обеспечивает более быструю работу, чем х86. Загружает команды более эффективно. Использует программную технологию DEP (Data Execution Prevention – Предотвращение выполнения кода). Применения Из-за того, что эти две архитектуры имеют различные функции и имеют различия в доступе к ресурсам, скорости и вычислительной мощности, каждая архитектура используется для различных целей: х86 Многие компьютеры по всему миру по-прежнему основаны на операционных системах и процессорах х86. Используется для игровых консолей. Подсистемы облачных вычислений по-прежнему используют архитектуру х86. Старые приложения и программы обычно работают на 32-битной архитектуре. Лучше подходит для эмуляции. 32-битный формат по-прежнему более предпочтителен при производстве аудио из-за возможности совмещения со старой аудиотехникой. х64 Все большее число ПК используют 64-разрядные процессоры и операционные системы на основе архитектуры х64. Все современные мобильные процессоры используют архитектуру х64. Используется для обеспечения работы суперкомпьютеров. Используется в игровых консолях. Технологии виртуализации основаны на архитектуре х64. Она лучше подходит для новых игровых движков, так как она быстрее и обеспечивает лучшую производительность. Ограничения И хотя обе ISA имеют какие-то ограничения, х64 – все же более новый и более совершенный тип архитектуры. Ниже приведен список ограничений для обоих типов архитектур: х86 Имеет ограниченный пул адресуемой памяти. Скорость обработки ниже в сравнении с архитектурой х64. Фирмы-поставщики больше не разрабатывают приложения для 32-битных операционных систем. Для современных процессоров требуется 64-битная ОС. Все устройства в системе (видеокарты, BIOS и т.д.) совместно используют доступную оперативную память, оставляя еще меньше памяти для ОС и приложений. х64 Она не работает на устаревших устройствах. Ее высокая производительность и скорость, как правило, потребляют больше энергии. Маловероятно, что 64-разрядные драйверы будут доступны для старых систем и оборудования. Некоторое 32-разрядное программное обеспечения не полностью совместимо с 64-разрядной архитектурой. Как проверить, на какой архитектуре работает ваш компьютер – х64 или х86? Если вы купили ПК в последние 10-15 лет, то он с большой долей вероятности работает на архитектуре х64. Для того, чтобы проверить, является ли ваш компьютер 32-разрядным или 64-разрядным, выполните следующие действия: Шаг 1: Откройте настройки В Windows 10 нажмите на клавишу Windows и щелкните значок «Settings» («Настройки»). Шаг 2: Откройте параметры системы В меню настроек выберите пункт «System» («Система»). Шаг 3: Найдите характеристики устройства Выберите пункт «About» («О программе») на левой панели и в разделе «Device specifications» («Характеристики устройства») найдите тип системы: В приведенном выше примере система представляет собой 64-разрядную операционную систему с процессором на базе архитектуры х64. Через командную строку это можно сделать быстрее: wmic OS get OSArchitecture Ну а для Linux нужно выполнить команду: uname -m Что лучше – х86 или х64? Несмотря на то, что и у х86, и у х64 есть свои преимущества, будущее не терпит ограничений, а это значит, что х86 практически перестанет использоваться или будет полностью выведена из использования. К тому же, х64 намного быстрее, может выделять больше оперативной памяти и имеет возможности параллельной обработки через 64-битную шину данных. Это делает ее лучшим вариантом при выборе между двумя типами архитектуры. Если стоит выбор, какую ОП установить, то всегда лучше отдать предпочтение в пользу 64-разрядной ОС, поскольку она может запустить как 32-разрядное, так и 64-разрядное программное обеспечение. А вот ОС на базе х86 работает только с 32-разрядным программным обеспечением. В общем и целом, х64 гораздо более эффективна, чем х86, поскольку использует всю установленную оперативную память, предоставляет больше места на жестком диске, имеет более высокую скорости шины и общую лучшую производительность. Заключение Данная статья показала различия между архитектурами системы команд х86 и х64, а также описала их функции, возможные применения и ограничения. Примите во внимание все особенности каждой ISA и сделайте выбор в пользу наиболее вам подходящей.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59