По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Что такое DOM? DOM (Document Object Model) – это объектная модель документа. Это интерфейс между JavaScript и веб-браузером.  С помощью DOM вы можете написать код JavaScript для создания, изменения или удаления элементов HTML, установки стилей, классов и атрибутов, а также для принятия событий и реагирования на них. Дерево DOM формируется из HTML-документа, и с ним уже можно будет взаимодействовать. DOM – это очень сложный API, у которого есть методы и свойства для взаимодействия с деревом DOM. Как работает DOM – за кадром DOM продуманно организован. Родительский элемент называется EventTarget. Приведенная ниже диаграмма поможет вам лучше понять, как это работает: EventTarget – это интерфейс, реализуемый объектами, которые могут принимать события и у которых могут быть обработчики этих событий. Иными словами, любой источник событий реализует три метода, которые связаны с этим интерфейсом. Самыми распространенными генераторами событий являются Element и его дочерние элементы, Document и Window. Другие объекты также могут выступать в качестве источников событий.  Объект Window - это окно браузера. Все глобальные объекты, функции и переменные JavaScript автоматически становятся частью объекта Window. Глобальные переменные – это свойства Window. Глобальные функции – это методы Window. И даже Document (DOM HTML) является свойством Window. window.document.getElementById("header"); // Both are same document.getElementById("header"); В модели дом DOM есть узлы., и все части документа, такие как элементы, атрибуты, текст и т.д., организованы в виде иерархической древовидной структуры, которая состоит из родителей и потомков. Все эти части документа называются узлами (Node). Node на приведенной выше диаграмме представлен как объект JavaScript. В основном мы работаем с document, у которого есть такие распространенные методы, как document.queryselector(), document.getElementBy Id() и т.д. Теперь давайте посмотрим на document.  Как выбирать, создавать и удалять элементы с помощью DOM С помощью DOM мы можем выбирать, удалять и создавать элементы в JavaScript. Как выбирать элементы  Существует несколько способов выбрать HTML-элементы (HTML Elements) в JavaScript. Здесь мы рассмотрим следующие методы:  document.getElementById(); document.getElementByClassName(); document.getElementByTagName(); document.querySelector(); document.querySelectorAll(); Как использовать метод document.getElementById() Метод getElementById() возвращает элемент, идентификатор которого соответствует переданной строке. Идентификаторы элементов HTML должны быть уникальными, поэтому это самый быстрый способ выбрать элемент с идентификатором.  Пример: const ele = document.getElementById("IDName"); console.log(ele); // This will log the whole HTML element Как использовать метод document.getElementByClassName() Метод document.getElementByClassName() возвращает HTMLCollection элементов, которые соответствуют имени переданного класса. Можно искать сразу несколько имен классов, передав их через пробел. Тогда этот метод вернет «живую» HTMLCollection. Что такое «живая» HTMLCollection? Это означает, что как только мы получим HTMLCollection для какого-то имени класса, и если мы добавим элемент с тем же именем класса, то HTMLCollection автоматически обновится.  Пример: const ele = document.getElementByClassName("ClassName"); console.log(ele); // Logs Live HTMLCollection Как использовать метод document.getElementByTagName() Метод document.getElementByTagName() возвращает HTMLCollection элементов, которые соответствуют переданному имени тега. Его можно вызывать для любого элемента HTML. Метод вернет «живую» HTMLCollection. Пример: const paragraph = document.getElementByTagName("p"); const heading = document.getElementByTagName("h1"); console.log(paragraph); // p element HTMLCollection console.log(heading); // h1 element HTMLCollection   Как использовать метод document.querySelector() Метод document.querySelector() возвращает первый элемент, который соответствует переданному селектору. Здесь мы можем передать имя класса, идентификатор и имя тега. Давайте посмотрим на пример ниже: const id = document.querySelector("#idname"); // using id const classname = document.querySelector(".classname"); // using class const tag = document.querySelector("p"); // using tagname Правила выбора: если вы выбираете по имени класса, то используйте (.) в начале. Например, (“.classname”). если вы выбираете по идентификатору, то используйте (#) в начале. Например, (“#id”). если вы выбираете по имени тега, то просто введите тег. Например,  (“p”).  Как использовать метод document.querySelectorAll() Метод document.querySelectorAll() - это расширение метода querySelector. Этот метод возвращает все элементы, которые соответсвуют переданному селектору. Он возвращает «неживую» коллекцию Nodelist.  Пример: const ele = document.querySelectorAll("p"); console.log(ele); // return nodelist collection of p tag   ПРИМЕЧАНИЕ : HTMLCollection – это «живая» коллекция, а коллекция Nodelist – статическая.    Как создавать элементы Вы можете создавать HTML-элементы в JavaScript и динамически добавлять их в HTML. Вы можете создать любой элемент HTML с помощью метода document.createElement(), просто передав имя тега в скобках.    После того, как элемент будет создан, вы сможете добавить к нему имя класса, атрибуты и текст.    Вот пример: const ele = document.createElement("a"); ele.innerText = "Click Me"; ele.classList.add("text-left"); ele.setAttribute("href", "www.google.com"); // update to existing element in HTML document.querySelector(".links").prepend(ele); document.querySelector(".links").append(ele); document.querySelector(".links").befor(ele); document.querySelector(".links").after(ele); // Simalar to below anchor tag // Click Me   В приведенном выше примере мы создали тег привязки (anchor) в JavaScript и добавили атрибуты и имя класса к этому тегу. Там же у нас есть четыре метода для того, чтобы обновить созданный элемент в HTML. prepend(): вставляет данные поверх своего первого дочернего элемента. append(): вставляем данные или содержимое внутрь элемента по последнему индексу. before(): вставляет данные перед выбранным элементом. after(): помещает элемент после указанного элемента. Или можно сказать, что он вставляет данные за пределами элемента (делая это содержимое элементом того же уровня) в набор подходящих элементов. Как удалять элементы Мы знаем, как создавать элементы на JavaScript и помещать их в HTML. Но, что если нам нужно удалить элементы в HTML? Это довольно просто! Нам достаточно воспользоваться методом remove() для нужного элемента.  Вот пример: const ele = document.querySelector("p"); // This will remove ele when clicked on ele.addEventListner('click', function(){ ele.remove(); })   Как управлять CSS из JavaScript Мы знаем, как управлять HTML из JavaScript. А теперь мы узнаем, как управлять CSS из JavaScript. Это может помочь вам динамически менять стиль ваших веб-страниц.  Например, если вы нажимаете на элемент, то его фоновый цвет должен поменяться. Это реально сделать, управляя CSS из JavaScript.    Вот пример синтаксиса: const ele = document.querySelector("desired element"); ele.style.propertyName = value; // E.g - ele.style.color = red;   Когда вы меняете свойства CSS с помощью JavaScript, помните, что всякий раз, когда в CSS печатается «-», в JavaScript там будет стоять заглавная буква. Например, в CSS вы бы написали background-color, а в JavaScript – backgroundColor (с большой буквы C).    Вот пример: const ele = document.querySelector("div"); ele.style.backgroundColor = "red"; Предположим, что вы написали код CSS для своего проекта и хотите добавить классы с помощью JavaScript. Это можно сделать с помощью classList в JavaScript.    Вот еще один пример: const ele = document.querySelector(".link"); ele.classList.add("bg-red"); // add class bg-red to existing class list ele.classList.remove("pb-4");// remove class bg-red from existing class list ele.classList.toggle("bg-green"); // toggle class bg-red to existing class list which means if it already exists then it will be removed, if it doesn't exist it will be added. classList добавляет, удаляет или переключает классы относительно какого-то элемента. Это чем-то похоже на обновление существующих классов.    В отличие от element.className, он удаляет все существующие классы и добавляет указанный класс.  И еще один пример: const ele = document.querySelector(".link"); ele.classList.add("bg-red"); // add class bg-red to existing class list ele.classList.remove("pb-4");// remove class bg-red from existing class list ele.className = "p-10"; // Now this will remove all existing classes and add only "p-10 class to element."   Как использовать обработчики событий Событие (Event) – это изменение состояния объекта. Обработка событий (Event Handling) – процесс реагирования на события.  События происходит всякий раз, когда пользователь щелкает кнопкой мыши, наводит курсор на элемент, нажимает клавишу и т.д. Поэтому, когда происходит событие, и вы хотите выполнить какое-то действие, то вы используете обработчики событий, чтобы это действие произошло.  Мы используем обработчики событий для того, чтобы выполнить определенный код, когда это конкретное событие происходит. В JavaScript есть несколько обработчиков событий, однако процесс их добавления к элементам одинаков.  Вот синтаксис: const ele = document.querySelector("a"); ele.addEventListner("event", function(){ // callback function }); Вот некоторые события, которые вы можете использовать: click mouseover mouseout keypress keydown А вот пример использования события «click» (нажатия на кнопку мыши): const ele = document.querySelector("a"); ele.addEventListner("click", function(){ ele.style.backgroundColor = "pink"; }); Распространение событий: всплывание событий и перехват событий Распространение событий определяет то, в каком порядке элементы будут получать события. Существует два способа обработки порядка распространения событий в DOM: всплывание событий и перехват событий.  Что такое всплывание событий? Когда в каком-то компоненте происходит событие, то он сначала на нем запускается обработчик событий, только потом на его родительском компоненте, а затем уже и на всех остальных компонентах, которых называют предками.  По умолчанию все обработчики событий перемещаются именно в этом порядке - от события центрального компонента к событию компонента, который находится от него дальше всех.    Что такое перехват событий? Этот способ – противоположность предыдущему. Обработчик событий запускается сначала на родительском компоненте, а уже потом на том компоненте, на котором он фактически и должен был сработать.  Проще говоря, это означает, что событие сначала перехватывается самым удаленным элементом, а затем распространяется на внутренние элементы. Также этот способ называют «просачиванием вниз».    Давайте попробуем запустить следующий пример:                Example           
           
    Этот код выдаст нам следующее: Теперь давайте внимательно изучим приведенный выше пример. Я добавил получатель событий к тегу nav и тегу anchor. Когда вы нажимаете на nav, то цвет фона меняется на зеленый. Когда вы нажимаете на тег anchor, то цвет фона меняется на розовый.  Но когда вы нажимаете на тег anchor, то цвет фона меняется как у nav, так и у anchor. Это происходит из-за всплывания событий.    Вот что происходит, когда вы нажимаете только на элемент nav:       А вот что происходит, когда вы нажимаете только на элемент anchor: Для того, чтобы остановить распространение событий, мы можем воспользоваться методом stoppropagation() на получателе событий, из-за которого и происходит распространение события. В таком случае в приведенном выше примере получатель событий элемента nav не сработает.                   Example           
           
    Как перемещаться по модели DOM «Хороший разработчик JavaScript должен знать, как перемещаться по модели DOM. Перемещаться по модели DOM значит выбирать один элемент из другого,» - Зелл Лью. Теперь посмотрим, почему лучше обойти модель DOM, чем использовать метод document.querySelector(), и как это выполнить на профессиональном уровне.  Есть три способа обхода модели DOM: Снизу-вверх Сверху-вниз Продольный Как обойти модель DOM снизу-вверх Существует два метода, которые помогут вам перемещаться по модели DOM снизу-вверх: parentElement closest parentElement – это свойство, которое выбирает родительский элемент, например: const ele = document.querySelector("a"); console.log(ele.parentElement); //
parentElement отлично подходит для того, чтобы выбрать элемент, который находится на один уровень выше. Но closest позволяет найти элемент, который может быть на несколько уровней выше текущего. closest позволяет вам выбрать ближайший элемент-предок, который соответствует селектору.  Вот пример с использованием closest:
   

This is sample

   

This is heading

   

This heading 2

const ele = document.querySelector(".heading"); console.log(ele.closest(".demo")); // This is heading В приведенном выше фрагменте кода мы пытаемся получить ближайший элемент к .heading, который имеет класс .demo. Как обойти модель DOM сверху-вниз Мы можем перемещаться вниз, используя метод селектора children. При таком подходе вы можете выбрать прямого потомка нужного элемента.   Вот пример:
   Link-1    Link-2    Link-3    Link-4
const ele = document.querySelector("div"); const child = ele.children; console.log(child); // gives HTMLCollection // 4 element inside div Как обойти модель DOM продольно Это очень интересный вопрос, как же мы можем продольно обойти DOM. В основном мы можем использовать лишь два метода: previousElementSibling nextElementSibling С помощью метода previousElementSibling мы можем выбрать предшествующие элементы в HTML:
   Link-1    

Heading

const ele = document.querySelector("h1"); console.log(ele.previousElementSibling); // Link-1 А с помощью метода nextElementSibling мы можем выбрать последующие элементы в HTML:
   Link-1    

Heading

const ele = document.querySelector("a"); console.log(ele.nextElementSibling); //

Heading

img
До сих пор в этой серии статей примеры перераспределения маршрутов, над которыми мы работали, использовали один роутер, выполняющий перераспределение между нашими автономными системами. Однако с точки зрения проекта, глядя на этот роутер понимаем, что это единственная уязвимая точка, то есть точка отказа. Для избыточности давайте подумаем о добавлении второго роутера для перераспределения между несколькими автономными системами. То, что мы, вероятно, не хотим, чтобы маршрут объявлялся, скажем, из AS1 в AS2, а затем AS2 объявлял тот же самый маршрут обратно в AS1, как показано на рисунке. Хорошая новость заключается в том, что с настройками по умолчанию, скорее всего не будет проблем. Например, на приведенном выше рисунке роутер CTR2 узнал бы два способа добраться до Сети A. Один из способов — это через OSPF, к которому он подключен. Другой путь был бы через EIGRP AS, через роутер CTR1 и обратно в OSPF AS. Обычно, когда роутер знает, как добраться до сети через два протокола маршрутизации, он сравнивает значения административного расстояния (AD) протоколов маршрутизации и доверяет протоколу маршрутизации с более низким AD. В этом примере, хотя EIGRP AD обычно составляет 90, что более правдоподобно, чем OSPF AD 110, AD EIGRP External route (т. е. маршрута, который возник в другом AS) составляет 170. В результате OSPF-изученный маршрут CTR2 к сети A имеет более низкую AD (т. е. 110), чем AD (т. е. 170) EIGRP-изученного маршрута к сети A. Что в итоге? CTR2 отправляет трафик в Сеть A, отправляя этот трафик в OSPF AS, без необходимости передавать EIGRP AS. Время от времени, однако, нам потребуется произвести настройки некоторых не дефолтных параметров AD, или же нам понадобятся creative metrics, применяемые к перераспределенным маршрутам. В таких случаях мы подвергаемся риску развития событий, описанных на предыдущем рисунке. Давайте обсудим, как бороться с такой проблемой. Рассмотрим следующую топологию. В этой топологии у нас есть две автономные системы, одна из которых работает под управлением OSPF, а другая- под управлением EIGRP. Роутеры CTR1 и CTR2 в настоящее время настроены для выполнения взаимного перераспределения маршрутов между OSPF и EIGRP. Давайте взглянем на таблицы IP-маршрутизации этих магистральных роутеров. Обратите внимание, в приведенном выше примере, что с точки зрения роутера CTR2, лучший способ добраться до Сети 192.0.2.0 / 30 — это next-hop на следующий IP-адрес 192.0.2.5 (который является роутером OFF1). Это означает, что если бы роутер CTR2 хотел отправить трафик в сеть 192.0.2.0 /30, то этот трафик остался бы в пределах OSPF AS. Интересно, что процесс маршрутизации EIGRP, запущенный на роутере CTR2, также знает, как добраться до Сети 192.0.2.0 / 30 из-за того, что роутер CTR1 перераспределяет этот маршрут в Интересно, что процесс маршрутизации EIGRP, запущенный на роутере CTR2, также знает, как добраться до Сети 192.0.2.0 / 30 из-за того, что роутер CTR1 перераспределяет этот маршрут в EIGRP AS, но этот маршрут считается EIGRP External route. Поскольку EIGRP External route AD 170 больше, чем OSPF AD 110, в OSPF маршрут прописывается в таблице IP-маршрутизации роутера CTR2. Именно так обычно работает Route redistribution, когда у нас есть несколько роутеров, выполняющих перераспределение маршрутов между двумя автономными системами. Однако, что мы можем сделать, если что-то идет не так, как ожидалось (или как мы хотели)? Как мы можем предотвратить перераспределение маршрута, перераспределенного в AS, из этого AS и обратно в исходное AS, например, в примере, показанном на следующем рисунке. В приведенном выше примере роутер OFF1 объявляет сеть 192.168.1.0 / 24 роутеру CTR1, который перераспределяет этот маршрут из AS1 в AS2. Роутер OFF2 получает объявление маршрута от роутера CTR1 и отправляет объявление для этого маршрута вниз к роутеру CTR2. Роутер CTR2 затем берет этот недавно изученный маршрут и перераспределяет его от AS2 к AS1, откуда он пришел. Мы, скорее всего, не хотим, чтобы это произошло, потому что это создает неоптимальный маршрут. Общий подход к решению такой проблемы заключается в использовании route map в сочетании с tag (тегом). В частности, когда маршрут перераспределяется из одного AS в другой, мы можем установить тег на этом маршруте. Затем мы можем настроить все роутеры, выполняющие перераспределение, чтобы блокировать маршрут с этим тегом от перераспределения обратно в его исходный AS, как показано на следующем рисунке. Обратите внимание, что в приведенной выше топологии, когда маршрут перераспределяется от AS1 к AS2, он получает тег 10. Кроме того, роутер CTR2 имеет инструкцию (настроенную в карте маршрутов), чтобы не перераспределять любые маршруты из AS2 в AS1, которые имеют тег 10. В результате маршрут, первоначально объявленный роутером OFF1 в AS1, никогда не перераспределяется обратно в AS1, тем самым потенциально избегая неоптимального маршрута. Далее давайте еще раз рассмотрим, как мы можем настроить этот подход к тегированию, используя следующую топологию. В частности, на роутерах CTR1 и CTR2 давайте установим тег 10 на любом маршруте, перераспределяемом из OSPF в EIGRP. Затем, на тех же самых роутерах, мы предотвратим любой маршрут с тегом 10 от перераспределения из EIGRP обратно в OSPF. Для начала на роутере CTR1 мы создаем карту маршрутов, целью которой является присвоение тегу значения 10. CTR1 # conf term CTR1 (config) # route-map TAG10 CTR1 (config-route-map) # set tag 10 CTR1 (config-route-map) #exit CTR1 (config) # Обратите внимание, что мы не указали permit как часть инструкции route-map, и мы не указали порядковый номер. Причина в том, что permit — это действие по умолчанию, и карта маршрута TAG10 имела только одну запись. Далее мы перейдем к роутеру CTR2 и создадим карту маршрутов, которая предотвратит перераспределение любых маршрутов с тегом 10 в OSPF. Кроме того, мы хотим, чтобы роутер CTR2 маркировал маршруты, которые он перераспределяет из OSPF в EIGRP со значением тега 10. Это означает, что мы хотим, чтобы роутер CTR1 предотвратил перераспределение этих маршрутов (со значением тега 10) обратно в OSPF. Итак, пока мы находимся здесь на роутере CTR1, давайте настроим route-map, которая предотвратит Route redistribution со значением тега 10 в OSPF. CTR1 (config) # route-map DENYTAG10 deny 10 CTR1 (config-route-map) # match tag 10 CTR1 (config-route-map) # exit CTR1 (config) # route-map DENYTAG10 permit 20 CTR1 (config-route-map) # end CTR1 # Эта недавно созданная route-map (DENYTAG10) использует ключевые слова permit и deny, и у нее есть порядковые номера. Порядковый номер 10 используется для запрещения маршрутов с тегом 10. Затем имеем следующий порядковый номер (который мы пронумеровали 20), чтобы разрешить перераспределение всех других маршрутов. Теперь, когда мы создали наши две карты маршрутов, давайте применим TAG10 route map к команде EIGRP redistribute (к тегу routes, перераспределяемому в EIGRP со значением 10). Кроме того, мы хотим применить DENYTAG10 route map к команде OSPF redistribute (чтобы предотвратить перераспределение маршрутов, помеченных значением 10, обратно в OSPF AS). CTR1 # conf term CTR1 (config) # router eigrp 100 CTR1 (config-router) # redistribute ospf 1 route-map TAG10 CTR1 (config-router) # router ospf 1 CTR1 (config-router) # redistribute eigrp 100 subnets route-map DENYTAG10 CTR1 (config-router) # end CTR1 # Теперь нам нужно ввести зеркальную конфигурацию на роутере CTR2. CTR2#conf term CTR2(config)#route-map TAG10 CTR2(config-route-map) # set tag 10 CTR2(config-route-map) # exit CTR2(config)#route-map DENYTAG10 deny 10 CTR2(config-route-map) # match tag 10 CTR2(config-route-map) # exit CTR2(config) # route-map DENYTAG10 permit 20 CTR2(config-route-map) # exit CTR2(config) # router eigrp 100 CTR2(config-router) # redistribute ospf 1 route-map TAG10 CTR2(config-router) # router ospf 1 CTR2(config-router) # redistribute eigrp 100 subnets route-map DENYTAG10 CTR2(config-router) # end CTR2# Просто чтобы убедиться, что наши маршруты помечены, давайте проверим таблицу топологии EIGRP роутера OFF2. Обратите внимание, что все маршруты, перераспределенные в EIGRP из OSPF, теперь имеют тег 10, и мы сказали роутерам CTR1 и CTR2 не перераспределять эти маршруты обратно в OSPF. Именно так мы можем решить некоторые потенциальные проблемы, возникающие при перераспределении маршрутов. Дело за малым - прочитайте нашу статью про route redistribution с помощью IPv6.
img
Доброго времени суток, уважаемый читатель! Сегодня постараемся дать ответ на очень частый у системных администраторов вопрос: как выбрать правильный VoIP шлюз для подключения Asterisk? Какой нужен шлюз для конкретной конфигурации и как выбрать между FXO, FXS, BRI и PRI. Разбираться будем на примере следующих сценариев: Подключение IP – АТС Asterisk к ТфОП На примере ISDN линии Подключение через аналоговую линию Подключение аналоговых устройств к Asterisk Подключение обычной АТС и Asterisk к ISDN и аналоговой линии одновременно Подключение обычной АТС к SIP - провайдеру Подключение IP – АТС Asterisk к ТфОП В данном примере у нас есть IP – АТС Asterisk и устойчивое желание подключить ее к ТфОП (Телефонная сеть общего пользования). Разберем два случая: подключение через ISDN и через обычный аналог. На примере ISDN линии Для начала разберемся с терминологией. ISDN (Integrated Services Digital Network) – цифровая сеть с интеграцией услуг (позволяет использование телефон, факса, обмен данными и прочие) имеет два типа подключения: BRI и PRI: PRI (primary rate interface) – интерфейс первичного уровня. В России и Европе представлен потоком Е1, который имеет 32 канала, в котором 30 отведены на передачу голосу, а 2 остальных это сигнальные каналы. В России Е1 так же именуется ИКМ-30 (импульсно – кодовая модуляция, 30 каналов передачи). В США данный тип называется Т1. Для простоты, обозначим, что Е1 PRI позволяет совершать 30 одновременных вызовов. BRI (basic rate interface) – интерфейс базовой скорости. Основное различие состоит в том, что BRI предоставляет всего 3 канала, 2 из которых предназначены для передачи данных со скоростью 64 кбит/с, а 3 канал существует для передачи сигнальной информации. Для более простого понимания, запомним, что BRI позволяет совершать 2 одновременных вызова. На выбор того, или иного подключения может повлиять количество одновременных вызовов у вас в организации. Например, вы совершаете максимум 6 одновременных вызовов. В данном случае вам нужно 3 BRI линии, и, соответственно для подключения к ним 3 портовый BRI шлюз. В другом примере, если вы совершаете максимум 28 одновременных вызовов, то рассмотрите PRI линию и соответствующий к ней PRI шлюз. Интерфейс ISDN образуется всегда образуется между двумя типами оборудования: TE (Terminal Equipment) – терминальное оборудование пользователя. Это может быть компьютер, рабочая станция, телефонные аппараты, ISDN – совместимый маршрутизатор и прочее совместимое оборудование, которое может быть установлено у конечных пользователей. NR (Network Termination) – так называемое «сетевое окончание». Это конец линии, который подключается в ISDN коммутатор, завершая канал связи. Теперь, когда мы обладаем необходимым «бэкграундом» для понимания принципов работы ISDN, схематично изобразим подключение Asterisk к ISDN через шлюз: Вот небольшой список неплохих E1 PRI шлюзов: Модель Количество портов Е1 Примерная стоимость Dinstar MTG200-1E1 1 1000 USD Sangoma A101 1xE1 1 1500 USD Yeastar NeoGate TE100 1 1050 USD Beronet 1xE1, Box 1 1700 USD Подключение через аналоговую линию При подключении IP – АТС Asterisk через аналоговую линию все весьма тривиально – вам нужен обычный FXO шлюз. Одна аналоговая линия позволяет совершать 1 одновременный вызов. Схема соединения приведена ниже: Ниже небольшой список совместимых с Asterisk FXO – шлюзов: Модель Количество FXO портов Примерная стоимость Dinstar DAG1000-4O 4 180 USD Yeastar Neogate TA410 4 200 USD D-Link DVG-7111S 1 50 USD Grandstream GXW-4104 4 250 USD Подключение аналоговых устройств к Asterisk Теперь давайте разберем вариант, когда необходимо подключить аналоговое устройство к IP – АТС Asterisk. Это может быть простой аналоговый телефон или, например, факс. В данной конфигурации вам нужен FXS шлюз. Подключение одного устройства осуществляется в один порт FXS шлюза. Схема подключения приведена ниже: Если вы находитесь в состоянии выбора FXS – шлюза, то обратите внимание на эти модели: Модель Количество FXS портов Примерная стоимость Audiocodes MP-114, 4FXS 4 600 USD Dinstar DAG1000-4S 4 150 USD Grandstream HT-704 4 120 USD Yeastar Neogate TA800 8 230 USD Подключение обычной АТС и Asterisk к ISDN и аналоговой линии одновременно Рассмотрим весьма интересный сценарий: в нашем корпоративном контуре существует обычная офисная АТС и IP –АТС на базе Asterisk. К ТфОП они подключены через ISDN линию по интерфейсу E1 PRI. В данном случае необходимо осуществить подключение обычной АТС по Е1 потоку до PRI шлюза, а так же, подключить IP – АТС по протоколу SIP к этому же шлюзу. Изобразим наглядно на схеме: Подходящие для этой конфигурации модели: Модель Количество E1 портов Примерная стоимость Dinstar MTG200-2E1 2 1500 USD Beronet 4xE1, Box 4 4300 USD Теперь взглянем на подключение обычной АТС и IP – АТС Asterisk через аналог. Нам понадобится шлюз, оснащенный FXS и FXO портами. Учтите, что аналоговая линия позволяет совершать только 1 одновременный вызов, поэтому, выберите шлюз с достаточном количеством портов. Схема работы будет следующая: Ну и конечно оборудование: Модель Количество FXO портов Количество FXS портов Примерная стоимость Audiocodes MP-114, 2FXO/2FXS 2 2 650 USD Dinstar DAG1000-4S4O 4 4 300 USD Dinstar DAG2000-8S8O 8 8 500 USD Подключение обычной АТС к SIP - провайдеру Итак, осталось с разобраться с подключением обычной офисной АТС к SIP – провайдеру. В данном случае мы будем выбирать лишь как подключить АТС к шлюзу: через ISDN(PRI или BRI) или через аналог. За шлюзом у нас будет осуществляться подключение через сеть интернет по протоколу SIP. Соответственно, нужно также принять решение, будет это PRI – шлюз, или FXS – шлюз. Схема подключения АТС к SIP провайдеру через Е1 поток приведена ниже: И соответственно схема для подключения АТС через аналог до шлюза:
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59