По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данный момент на рынке представлено большое количество таких технологий виртуализации, как, например, OpenVZ, KVM и Xen. Вы, должно быть, встречались с этими терминами, если пытались купить виртуальный частный сервер (VPS). В статье мы сравним эти три технологии с точки зрения покупки VPS, чтобы вы могли выбрать наиболее подходящую вам технологию. Обзор Виртуализации и Контейнеризации Виртуализация – это технология, которая позволяет вам создавать несколько виртуальных машин (ВМ) на одном аппаратном обеспечении. В свою очередь каждая виртуальная машина представляет собой физический компьютер, на который вы можете установить операционную систему. Работу виртуальных машин контролирует гипервизор, который предоставляет им хостовые системные ресурсы: процессорные, оперативной памяти и устройств хранения. Все ВМ изолированы друг от друга, то есть программное обеспечение одной ВМ не имеет доступ к ресурсам другой ВМ. Многие провайдеры VPS устанавливают гипервизор на физический сервер и предоставляют пользователям виртуальную машину в качестве виртуального частного сервера (VPS). Контейнеризация сильно отличается от виртуализации. Вместо гипервизора на хост-систему устанавливается операционная система, на которой вы можете создавать «контейнеры». Внутри контейнеров вы можете создавать приложения, и уже ОС позаботится о выделении ресурсов каждому контейнеру. В этом случае ядро операционной системы и драйверы являются общими для всех контейнеров. Таким образом, контейнеризация зависит от ОС. И, соответственно, в контейнере можно запускать только те программы, которые соответствуют хостовой ОС. Например, если контейнеризация работает на Linux как на хостовой ОС, внутри контейнера вы можете запускать приложения только на Linux. В этом отличие от виртуализации – в виртуальной машине вы можете запустить любую ОС и, соответственно, любое приложение. С другой стороны, контейнеризация намного более эффективна, чем виртуализация, так как не затрачивает лишнюю энергию на запуск ОС в каждой виртуальной машине. В этой статье мы уделим внимание системной контейнеризации. Такой вид контейнеризации позволит вам запускать ОС внутри контейнера. Несмотря на это, ядро и драйверы по-прежнему являются общими для различных операционных систем внутри каждого контейнера. Xen и KVM являются технологиями виртуализации, а OpenVZ – это технология контейнеризации на базе Linux. OpenVZ OpenVZ (Open Virtuozzo) – это платформа контейнеризации, базирующаяся на ядре Linux. Она позволяет на одной хост-системе запускать несколько ОС, также базирующихся на Linux. Контейнеры работают как независимая система Linux с правами доступа уровня root, изоляцией на уровне файлов, пользователей или групп, процессов и сетей. Провайдеры серверов предоставляют контейнерам OpenVZ некоторое количество оперативной памяти, процессорных ядер и места на жестком диске и продают их в качестве виртуальных серверов Linux. Какая-то часть ресурсов ЦП и памяти выделена контейнеру, а какая-то часть ресурсов “разрывается”, то есть если контейнеру требуется больше ресурсов помимо того, что ему было выделено, он может временно заимствовать их из неиспользуемых ресурсов других контейнеров. Так как при контейнеризации ядро является общим для всех контейнеров, изменить настройки ядра, обновить его или использовать дополнительные модули ядра невозможно. К моменту написание этой статьи большинство провайдеров используют OpenVZ 6 на базе Linux 2.6. Таким образом, вы не сможете улучшить функционирование системы и возможности ядра за счет обновлений. У вас так и останется старый дистрибутив Linux. И вы не сможете установить Docker или использовать утилиты ipset и nftables. OpenVZ 7 – это самая последняя версия проекта с обновленным ядром. Однако очень немногие провайдеры предоставляют ее из-за сложности установки и нехватки вспомогательных инструментов. В заключение, с точки зрения провайдера систему OpenVZ легко конфигурировать и запускать, в отличие от KVM и Xen. И так как это система на контейнеризации, она затрачивает намного меньше энергии, вследствие чего провайдеры могут предоставлять большее количество VPS с одного физического сервера. Xen Xen – это платформа виртуализации с открытым исходным кодом, которая первоначально начиналась как исследовательский проект в Кембриджском университете. В настоящее время в разработке проекта участвует Linux Foundation. С помощью различных инструментов провайдер предоставляет виртуальным машинам Xen фиксированный объем оперативной памяти, процессорных ядер, места на жестком диске и IP-адресов и предлагает их в качестве VPS. В целом гипервизоры делятся на два типа: 1 и 2. Гипервизор типа 1 работает непосредственно на хост-оборудовании, в то время как гипервизор типа 2 зависит от базовой операционной системы. Xen относится к гипервизору первого типа. Так как Xen – технология виртуализации, созданные на ее основе ВМ могут работать на любой ОС, включая Linux, Windows и BSD. А поскольку каждая ВМ работает на своей операционной системе, вы можете обновить ядро, изменить его настройки или использовать дополнительные модули ядра. Установка виртуализации несет за собой большой расход энергии на эмуляцию определенных аппаратных функций, а также на запуск операционной системы. Чтобы уменьшить расходы, Xen использует технику "паравиртуализация". В этом случае гипервизор использует альтернативные способы выполнения одних и тех же аппаратных операций более эффективным способом. Если гостевая ОС знает, как использовать эти альтернативные интерфейсы, она делает “гиперзвонок”, чтобы поговорить с гипервизором. Этот режим работы называется Xen Paravirtualization (Xen-PV). Когда гостевая ОС поддерживает паравиртуализацию, используется другой режим виртуализации – Xen Hardware Virtual Machine (Xen-HVM). В этом случае Xen использует программу QEMU, чтобы обеспечить эмуляцию аппаратного обеспечения. Чтобы использовать Xen-HVM, аппаратная виртуализация должна быть обеспечена хост-системой. KVM KVM (Kernel Virtual Machine) – это модуль ядра Linux, который предоставляет платформу для сторонних инструментов (таких как QEMU) для обеспечения виртуализации. Поскольку это модуль ядра, KVM повторно использует многие функции ядра Linux для своих целей. С точки зрения конечного пользователя Xen похож на KVM, поскольку он позволяет запускать любую ОС и работать с низкоуровневыми настройками ядра. Провайдеры серверов используют сторонние инструменты для создания виртуальных машин с фиксированным объемом оперативной памяти, ядрами ЦП, пространством жесткого диска и IP-адресами и предлагают их в качестве виртуальных машин. Иногда провайдеры VPS, использующие KVM, предоставляют пользователю возможность загрузить свой ISO-файл для установки на VPS. KVM работает только на оборудовании, поддерживающем аппаратную виртуализацию. Подобно Xen, KVM также обеспечивает паравиртуализацию для устройств ввода-вывода через API «virtio». Что же выбрать? Выбор платформы зависит исключительно от ваших предпочтений. Если вы не хотите тратить много денег на Linux сервер и вас не беспокоит старая версия ядра и невозможность пользоваться такими программами, как Docker, то выбирайте OpenVZ. Если вам нужна еще другая ОС, например, Windows или вы хотите использовать обновленное ядро Linux, выбирайте KVM или Xen. Многие провайдеры используют возможность OpenVZ «разрываться» и перегружают свои системы, вмещая как можно больше серверов на один хост. В случае, если слишком много серверов будет пользоваться центральным процессором и памятью одновременно, вы заметите значительное снижение уровня производительности своего сервера. Есть провайдеры, которые рекламируют свои KVM и Xen как «специализированные ресурсы», но, к сожалению, это тоже не всегда правда. И KVM, и Xen предлагают функцию «раздувания памяти» («memory ballooning»), при которой ваша оперативная память может быть востребована другим VPS. В каждом VPS установлен драйвер (Balloon Driver), который помогает в этом процессе. Когда гипервизор забирает память у вашего VPS, создается впечатление, что драйвер не дает пользоваться вашей памятью. Однако VPS никогда не сможет получить больше памяти, чем ему было изначально выделено. Таким образом, перегрузка возможна в случае со всеми тремя платформами. Однако провайдеры KVM/Xen перегружают их намного меньше, чем OpenVZ, из-за технических ограничений системы, основанной на гипервизоре. Чтобы определить производительность сервера перед покупкой, следует пройти тест производительности (бенчмарк) с помощью приложений: bench.sh, speedtest-cli или Geekbench. К тому же, прежде чем покупать VPS, основанный на одной из технологий – OpenVZ, KVM или Xen, лучше сравнить цены и прочитать комментарии о компании. У провайдера с заниженными ценами или плохой репутацией независимо от технологии будет низкая производительность VPS.
img
В данной главе рассматриваются вопросы технической диагностики системы автоматического мониторинга ВОЛС, необходимость в которой возникает из-за сложности этой системы. Техническое диагностирование - процесс определения технического состояния изделия с определенной точностью. Цель технического диагностирования это поддержание достаточного уровня надежности. При наступлении отказа диагностирование предполагает обнаружение факта отказа и его локализацию. Система технического диагностирования (СТД) - совокупность средств, осуществляющих измерение количественных значений параметров (диагностических параметров ДП), анализ и обработку результатов измерений по установленным алгоритмам. Техническим средством диагностирования являются автоматические измерительные системы, рассмотренные в главе 2. Одним из основных методов решения задач диагностирования является моделирование объекта технического диагностирования и выделение взаимосвязей в этих моделях. Модель объекта - это формализованная сущность, характеризующая определенные свойства реального объекта в удобной и желательно для инженера в наглядной форме. Существуют аналитические модели, в которых модель строится на основе уравнений, связывающих различные параметры; графоаналитические, основанные на представлении диаграмм (в частности направленных графов) прохождения сигналов; информационные модели представляют собой информационные описания в терминах энтропия, информация и т.п. Чаще всего используемым в практических целях и наиболее наглядным являются функционально-логические модели, которые реализуются различными способами, определяемыми особенностью функциональной схемы диагностируемого изделия. В настоящей работе применяется диагностирование, основанное на функционально-логическом моделировании и реализуемое инженерным способом. В соответствии с решаемой задачей выбирается та или иная "функция предпочтения". В данном случае решается задача поиска неисправности, для которой выбирается W4 функция предпочтения о которой ниже. Разработка алгоритма диагностирования Считаем, что объект диагностирования задан следующей функциональной схемой (рисунок 1). После построения функциональной модели необходимо определить множество возможных состояний объекта, который диагностируется. Общее число состояний при N функциональных элементов при двоичных исходах проверок (1 исправно, 0 неисправно) равно при диагностировании системы 2N - 1. Предполагается, что одновременное появление двух независимых отказов маловероятно, поэтому число сочетаний из N элементов по одному, равно N. Число всех возможных различных состояний аппаратуры, которая диагностируется, одновременно с учетом отказов одного функционального - сводятся в таблицу состояний (матрицу исправностей, матрицу неисправностей и т. п.), которая используется при разработке программы (алгоритма) поиска неисправностей. Матрица состояний строится по следующим правилам: S0 - строка, соответствующая работоспособному состоянию; Sj - строка, соответствующая состоянию в котором оказался j-тый элемент модели. Например, состояние S4 = 0 означает событие, при котором отказал 4-ый четвертый элемент модели; S2 = 0- второй и т.п.). Этому событию соответствует недопустимое значение сигнала Zi, и тогда на пересечении пишется 0. Если любой другой i - й элемент также недопустимое значение Zi, то на пересечении j ой строки и Zi - ого столбца таким же образом записывается "0"; при этом, если значение параметра будет находиться в допуске, то на пересечении пишется "1". Считается, что значения всех внешних входных сигналов xi всегда будут находиться в пределах допуска, а линии связи между элементами абсолютно надежны. Если есть сомнение в надежности линии, то её принимают за функциональный элемент. Транспонируем матрицу (таблица 1). Так как мы осуществляем построение алгоритма поиска неисправности, то первую строку S0, означающее исправное состояние исключаем. Последний столбец функция предпочтения W4, которую установили из следующих соображений. Так как матрица заполнена нулями и единицами, то равенство некоторого ij элемента соответствует тому, отказ i-го элемента влияет на j-ый выходной параметр j-го элемента, если контролировать выходной параметр Zj можно определить, в каком именно состоянии находится i-ый элемент. Следовательно, чем больше "0" в строке Zj матрицы, тем более большое количество информации может нести этот параметр о состоянии объекта, который находится под контролем. Для этого в качестве предпочтительной функции решении данной задачи контроля работоспособности необходимо принимать функцию вида: Где ; - означает количество нулей в I-ой строке матрицы. Если для объекта контроля известны вероятности состояний P(Zi): Также заданы C(Zi) стоимости контроля параметров: Так как строится алгоритм нахождения неисправности, то функция предпочтения будет: где суммы означают количество нулей и единиц соответственно в I-той строке транспонированной матрицы состояний. Значения W4(Zi) для каждой строки приведены в последнем столбце транспонированной матрицы (таблица 3.2). Последовательность решения следующая: 1) Выбираем ту строку, в которой функция предпочтения W4(Zi) минимальна, так как эта строка несет максимальное количество информации, разбивая все возможные состояния объекта на две равные части. 2) Минимально значение для 6,7,13 и 14 строк, т.е. по этому критерию они равнозначны. Для контроля выбираем строку 7. Итог контроля по этому параметру W4(Zi) разбивает матрицу на равные части W4(Z7) - первое разложение: 2.1) Эти состояния не влияют на данный выходной параметр функционального элемента; 2.2) Значения параметра не в допуске, что говорит о неисправности объекта. 3) Дальше аналогично анализируются обе получившиеся части (3-е, 4-е и последующие разложения (как показано на рисунке 6). 4) Процедура продолжается, пока множество N=14 возможных состояний объекта диагностирования не будут разделены на отдельные состояния. Чтобы упорядочить для дальнейшего осколки введём следующее обозначение для каждого конкретного осколка: Где m - номер разбиения; "H" - принимает значение 1 или 0 в зависимости от состояния строки матрицы; n - номер осколка, считая, что осколки всегда располагаются, начиная с "1". Например, обозначение 3«0»6 значит, что это осколок при третьем разбиении для значения "0". (впрочем, "1" всегда соответствуют нечетные значения "n", а «0» - четные) Ниже представлены результаты анализа для принятой конкретной функциональной модели на рисунке 3. Первое разбиение по строке Z7, имеющая W7 = 0 z7, имеющая W7 = 0 В таблице 3.3. представлена матрица (осколок) после первого разбиения для результатов проверки «1», т.е. при введенных обозначениях: 1«1»1. Для второго разбиения взята строка Z11, имеющая меньшее значение функции предпочтения W4 = 1 В таблице 3.4 представлена таблица после первого разбиения с «0»,, т.е. 1«0»,1. Дальше "заливкой" показаны строчки, выбранные для следующих разбиений. Для первого разбиения матрицы взята строка Z11, функция предпочтения которой W4 = 1. S8 S9 S10 S11 S12 S13 S14 W4 z8 0 1 1 1 1 1 1 5 z9 1 0 1 1 1 1 1 5 z10 1 1 0 1 1 1 1 5 z11 1 1 0 0 0 1 1 1 z12 1 1 0 0 0 1 1 1 z13 1 1 0 0 0 0 1 1 z14 1 1 0 0 0 1 0 1 Таблица 3. - 1«1»1 S1 S2 S3 S4 S5 S6 S7 W4 z1 0 1 1 1 1 1 1 5 z2 0 0 0 1 1 1 1 1 z3 1 1 0 1 1 1 1 1 z4 1 1 0 0 0 1 1 1 z5 1 1 0 0 0 1 1 3 z6 1 1 0 0 0 0 1 7 z7 1 1 0 0 0 1 0 7 Таблица 4. - 1«0»1 Матрица после второго разбиения при «1». Для 3-го разбиения взята строка Z13 Результаты третьего разбиения: Результаты четвертого разбиения: По результатам разбиений получаем номера ФБ для контроля: результат третьего разбиения: 3«0»2→13; 3«1»4→11 и 12; 3«0»4→10; 3 «1»5→6 и 7; 3«0»6→5; 3 «1»7→4. Результат четвертого разбиения: 4«0»2 → 9. Результат пятого разбиения: 5«1»1 → 8; 5«0» →14; 5«1»15 → 2 и 3; 5«0»16 →1. По полученным в результате анализа матрицы состояний номерам контролируемых ФБ для определения неисправного блока строим алгоритм контроля. Алгоритм контроля Рисунок 2. Как видно из алгоритма, максимальное количество элементарных проверок для нахождения неисправного ФБ равно 5 (в данном случае ФБ 8 и 14) Заключение 1.На основе функционально-логической модели и инженерного способа разработан оптимальный алгоритм диагностирования гипотетической систем, которая моделирует систему автоматического контроля и мониторинга. 2. Проведен расчет и в результате получен алгоритм. Для принятой модели максимальное число элементарных испытаний равно 5.
img
Друг! Недавно в нашей статье мы рассказывали, как произвести базовую настройку телефонов в Cisco CME (CUCME) используя интерфейс командной строки. Сегодня мы сделаем то же самое, но уже при помощи графического интерфейса Cisco Configuration Professional (CCP) , про установку которого можно почитать здесь. /p> Добавление CME роутера в CCP Первым делом настроим наш роутер как CME. Для этого выбираем наш роутер в списке Select Community Member и нажимаем Configure и выбираем вкладку Unified Communications Features. Здесь нам будут доступны следующие опции: Cisco Unified Border Element (CUBE) – эта опция настраивает роутер как шлюз для IP телефонии для IP-IP сервисов, таких как IP Telephony Service Provision (IP-TSP). CUBE предоставляет типичные пограничные сервисы такие как NAT/PAT, и добавляет к ним VoIP функциональность для билинга, безопасности, контроля, QoS и прочего. IP Telephony – CUCME – CCP настраивает роутер как отдельную CME систему. IP Telephony – SRST – Позволяет IP телефонам использовать CME роутер как резервное устройство, если они потеряли связь с кластером CUCM. IP Telephony – Cisco Unified Call Manager Express as Cisco Unified Survivable Remote Site Telephony – предоставляет то же самое что и SRST, но с полным набором функций CME. Однако из-за этого уменьшается количество поддерживаемых телефонов. TDM Gateway – добавляет функционал шлюза, который может быть сконфигурирован вместо или совместно с CME. Media Resources – позволяет настроить цифровой сигнальный процессор DSP. Нам нужно поставить галочку IP Telephony, выбрать пункт CUCME – Cisco Unified Communications Manager Express, нажать ОК и затем в открывшемся окне нажать Deliver, после чего на маршрутизаторе будут произведены необходимые начальные настройки (какие именно команды будут применены можно увидеть в окне предпросмотра). Настройка Telephony Service Cisco предоставляет графический интерфейс для конфигурации ephone и ephone-dn (что это такое можно почитать тут). Однако просто взять и добавить ephone-dn (тут они называются “Extensions”) и ephone (они называются “Phones”) нельзя, интерфейс выдаст нам ошибку, что сначала нужно настроить Telephony Service Поэтому займемся настройкой Telephony Service. Чтобы это сделать нужно перейти в меню Configure – Unified Communications – Telephony Settings. Здесь нам необходимо настроить следующие поля: Supported Endpoints – какой протокол будут использовать телефоны (SIP, SCCP или оба) Maximum number of phones – максимальное количество ephone (команда max-ephones) Maximum number of extensions – максимальное количество ephone-dn (команда max-dn) Phone registration source IP address – адрес регистрации телефонов (команда ip source address) Иногда CCP может не обновлять конфигурацию CME, после внесения изменений. Если вы указали все необходимые настройки, но все еще получаете ошибку, что нужно настроить Telephony Settings, то в этом случае нужно вручную обновить конфигурацию, нажав кнопку Refresh. Если вы используете GNS3 для эмуляции роутера с CME, то при попытке войти в меню Telephony Settings будет появляться ошибка “An internal error has occurred”, и начальные настройки нужно ввести через интерфейс командной строки маршрутизатора. После того как мы заполнили поля нажимаем ОК, а затем Deliver. Теперь мы можем добавлять телефоны. Добавление телефонов, номеров и пользователей в CCP Начнем с добавления Extension, который технически является ephone-dn. Переходим во вкладку Configure – Unified Communications – Users, Phones and Extensions – Extensions и внизу нажимаем Create Здесь заполняем следующие поля: Primary Number – номер телефона (единственное обязательное поле) Secondary Number – дополнительный номер Name to be displayed on phone line – имя, которое будет отображаться на телефоне Description – описание Active calls allowed on a Phone Button – количество одновременных звонков (single-line или dual line) После заполнения нужных полей нажимаем ОК и Deliver, после чего телефон появляется в таблице с номерами. Теперь перейдем к настройке Phones. Для этого переходим во вкладку Configure – Unified Communications – Users, Phones, and Extensions – Phones (или Phones and Users, в зависимости от версии) и нажимаем Create. Здесь нам нужно заполнить два обязательных поля: модель телефона Cisco, который мы хотим добавить и его mac адрес, в формате xxxx.xxxx.xxxx . Внизу в столбце Available Extensions появятся созданные нами номера. Нам нужно перенести необходимый номер в правую таблицу, нажав кнопку со стрелкой вправо, выбрав номер линии и указав ее тип и тип звонка (в зависимости от версии CCP, привязка Phone к Extension может производиться в меню создания пользователя). В этом же окне мы можем создать пользователя. Используя свой аккаунт, пользователь может управлять настройками своего телефона через веб-интерфейс. Для этого переходим во вкладку User и указываем логин в строке User ID, а также пароль для входа. При создании юзера из этого меню, он будет ассоциирован с этим телефоном. В зависимости от версии CCP, может меняться местонахождение этой вкладки, и она может быть расположена в Configure – Unified Communications – Users, Phones, and Extensions – User Settings. Применяем настройки также нажатием клавиш ОК и Deliver. Также в CCP можно импортировать большое количество экстеншенов и телефонов в файлах .CSV через Bulk Import Wizard, который находится на панели справа. Также при помощи CCP можно проверить работоспособность системы и телефонов, через меню Configure – View – IOS Show Commands, где из выпадающего списка можно выбрать команду show и CCP отобразит ее вывод.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59