По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Windows включает в себя надежный (в целом 🙄), но простой в использовании, брандмауэр с расширенными возможностями. А с помощью PowerShell 7 можно легко настроить его из командной строки. В этой статье описываются общие команды, используемые в межсетевом экране Windows, а также возможные способы их использования. Модуль NetSecurity хорошо задокументирован. Учтите, что эта статья относится только к операционной системе Windows. Для других операционных систем существуют другие инструменты командной строки, которые могут использоваться для выполнения тех же задач, такие как UFW или IPTables в Linux. Вызов модуля NetSecurity Предустановленный в системе модуль NetSecurity обладает всем необходимым функционалом для управления правилами межсетевого экрана Windows. Чтобы задействовать данный модуль, достаточно импортировать его показанным ниже способом (конечно же команду запускаем в PowerShell): Import-Module -Name 'NetSecurity' Вывод списка правил Командлет Get-NetFirewallRule выводит список настроенных правил. В системе большое количество предварительно настроенных правил, но для примера мы выбрали первые 10: Get-NetFirewallRule | Select-Object DisplayName, Enabled, Direction, Action -First 10 По умолчанию, командлет выводит все параметры, но на примере выше мы выбрали всего четыре из них (они, собственно, перечислены в команде). А получить все параметры можно командой: Get-NetFirewallRule | Select-Object * -First 1 Создание нового правила Создать новое правило позволяет команда New-NetFirewallRule. Основные параметры, которые нужно передать команде следующие: DisplayName - название правила; Direction - Направление трафика, которое нужно блокировать. Может быть либо входящим (Inbound), либо Исходящим (Outbound); Action - Действие правила. Правило может быть либо Разрешающим (Allow), либо Запрещающим (Block). $Params = @{ "DisplayName" = 'Block WINS' "Direction" = 'Inbound' "Action" = 'Block' "RemoteAddress" = 'WINS' } New-NetFirewallRule @Params Если не указан параметр Name, система сгенерирует случайный GUID. DisplayName может быть читабельным, но сам Name будет сгенерирован случайным образом. Изменение существующего правила Что если нужно изменить какой-то параметр правила, не удаляя и пересоздавая его? Для этого нужно задействовать командлет Set-NetFirewallRule. $Params = @{ "DisplayName" = 'Block WINS' "Action" = 'Allow' } Set-NetFirewallRule @Params Данная команда также позволяет вносить изменения в несколько правил сразу. Это можно сделать, передав команде одно из трех параметров правила: Name - Параметр по умолчанию. Если команде переданы несколько параметров Name в виде строки или же через пайплайн (|), изменения коснутся каждого из правил; DisplayName - так же, как и в случае с параметром Name, команде можно передать нескольких правил, чтобы изменить их; DisplayGroup или Group - Если несколько правил сгруппированы, то команде можно передать название этой группы и внести изменения во все члены указанной группы. Удаление правила И, наконец, мы хотим удалить правило, которое больше не нужно. Для этого запускаем командлет Remove-NetFirewallRule. Также при удалении часто рекомендуется использовать параметр WhatIf, который позволяет убедиться в том, что будет удалено нужное правило. Remove-NetFirewallRule -DisplayName "Block WINS" Следует отметить, что данный командлет позволяет удалять несколько правил сразу. На примере ниже мы удаляем все отключенные правила, которые содержит групповая политика firewall_gpo в домене ad.local.test. Remove-NetFirewallRule -Enabled 'False' -PolicyStore 'ad.local.test\firewall_gpo' Запущенный сам по себе командлет Remove-NetFirewallRule достаточно полезный, но в то же время опасный, так как удаляет все локально созданные правила. Если есть доменная групповая политика, определяющая правила межсетевого экрана, данная команда удалит все локальные правила, конфликтующие с правилами групповой политики. Дополнительные возможности Модуль NetSecurity включает в себя множество других команд, которые мы не затронули в данной статье. Поэтому ниже приводим список и возможности данных команд. Copy-NetFirewallRule - данная команда копирует существующее правило и все связанные с ними фильтры в то же или другое хранилище политик; Disable-NetFirewallRule - отключает ранее созданное правило. Отключенное правило не удаляется из базы, но уже никак не влияет на трафик. Если запустить эту команду без параметров, то она отключит все активные правила на целевой машине. Поэтому если не указано конкретное правило или группа правил, рекомендуется всегда запускать данную команду с параметром WhatIf; Enable-NetFirewallRule - в противовес предыдущей команде, данный командлет включает все отключенные правила. Если не указано конкретное правило, то данную команду также рекомендуется запускать с параметром WhatIf; Get-NetFirewallProfile - эта команда отображает параметры, настроенные для указанного профиля, например, профилей Domain, Private или Public; Get-NetFirewallSettings - глобальные параметры брандмауэра можно получить с помощью команды Get-NetFirewallSettings. Это такие параметры, как параметры сертификатов, организация очередей пакетов или списки авторизации; Rename-NetFirewallRule - данная команда позволяет переименовать существующее правило. Это полезно, если правило было создано без указания имени, таким образом получив случайный GUID в качестве название, и предпочтительно назначить читабельное название; Set-NetFirewallProfile - для установки определенных параметров отдельных профилей можно использовать команду Set-NetFirewallProfile. Это позволяет каждому профилю иметь различные настройки; Set-NetFirewallSettings - позволяет настроить поведение межсетевого экрана независимо от используемого профиля сети; Show-NetFirewallRule - эта вспомогательная команда отображает правила брандмауэра и связанные с ними объекты в виде отформатированного списка. Данный модуль также включает расширенные возможности для управления IPSec. Указанные выше команды управляют стандартными настройками межсетевого экрана Windows. Заключение Существует множество команд для управления межсетевым экраном Windows. В этой статье рассматриваются только некоторые из них, наиболее важные команды для быстрого вывода списка, создания, изменения и удаления правил брандмауэра. Но с помощью модуля NetSecurity можно сделать настройки и посложнее.
img
В этой статье мы рассмотрим переменные, которые отвечают за локализацию и кодировку операционной системы. Данная тема достаточно важна, т.к. некоторые прикладные сервисы требуют нестандартной кодировки или региональной локализации. В Linux системах есть основная переменная $LANG – которая задает основной язык системы. Есть и другие переменные, но они берут изначально настройки с этой основной переменной $LANG. Можно настроить отдельные какие-то переменные, но можно все же давать значение основной переменной $LANG и она будет давать значение всем остальным. Есть так же переменная LC_ALL – которая позволяет нам разом перезаписать все языковые настройки. Есть также утилита locale которая показывает кучу переменных, которые относятся к языковым настройкам. $LANG= – данную переменную обычно используют для написания скриптов, чтобы те или иные настройки установить по умолчанию для выполнения скрипта. В большинстве случаев данная настройка включает английский язык по умолчанию. Есть такая команда env, которая выводит заданные переменные в системе. И тут в частности, есть переменная которая отвечает за языковые настройки. В нашем случае LANG=en_US.UTF-8, т.к скриншот делался на операционной системе с английской локализацией по умолчанию. Мы видим en_US в кодировке UTF-8. En_US – говорит о том, что у нас используется американский английский язык. Посмотреть все переменные относящиеся к данной локализации мы можем с помощью утилиты locale. Как вы видите все остальные переменные на данной установленной операционной системе тоже американские. Почему это важно? Во-первых, это важно для логгирования. С такими настройками система будет писать файлы системных и других логов в американском формате yyyy-mm-dd (год-месяц-день: 2006-12-31), в русском формате же правильно будет dd-mm-yyyy. И при передаче логов из одной системы в другую возникнут ошибки. Другой пример - бывают нестандартные решения, допустим хранение базы данных 1С в postgre. Для того чтобы сервер приложений корректно работал с базой опять же необходима русская локализация. И таких примеров взаимодействия можно привести достаточно много. Теперь, если у нас появилась необходимость поменять какую-нибудь, переменную, например, LC_TIME то делаем следующее: LC_TIME=ru_RU.UTF-8 – задаем переменную. export LC_TIME – загружаем переменную. Мы можем сразу все настройки изменить - LC_ALL=ru_RU.UTF-8 Далее export LC_ALL. Если мы ошибемся с вводом локали (языковой пакет настроек) или в системе не загружена такая локаль, то система нам выдаст ошибку: Надо выполнить инсталляцию языкового пакета sudo apt-get install language-pack-ru Генерация файла с обновленной информацией о добавленных пакетах в систему: sudo locale-gen И после этого опять попробовать сменить. Для возврата в исходное состояние настроек мы можем выполнить команду unset LC_ALL. После выполнения данной команды все настройки языковые системы вернутся в исходное состояние. Немного о кодировке. Кодировка - это представление символов в определенном виде. Самые распространенные кодировки, используемые в Linux: ASCII – 128 основных символов; ISO-8859 – большинство латинских символов; UTF-8 -символы Unicode. Для конвертации используется утилита iconv, но есть более практический инструмент. Если нам необходимо конвертировать какой-то файл в другой, то проще всего использовать Notepad++. Открываем файл, в меню выбираем пункт кодировка. Программа покажет текущую и меняем на интересующую нас. Затем сохраняем. В случае если у нас только консольное подключение, делаем это с помощью iconv. Общий вид команды: iconv [опция] [-f кодировка 1] [-t кодировка 2] [исходный файл] [целевой файл] Установка и настройка часовых зон. Утилита tzselect позволяет осуществить поиск нужной временной зоны. Появляется мастер пошаговый, который позволяет сделать свой выбор и в конце дает инструкцию, как сделать, чтобы выбор сохранился. Вторая утилита это date, которая выводит текущую дату и время, если запустить ее без параметров, а также позволяет установить их. Опции и форматы можно посмотреть при помощи команды man date Для установки даты и времени необходимы права суперпользователя. sudo date -s “yyyymmdd hh:mm” – обратите на формат вводимых данных.
img
Перед тем как начать, почитайте материал про топологию сетей. Обнаружение соседей позволяет плоскости управления узнать о топологии сети, но как узнать информацию о достижимых пунктах назначения? На рисунке 8 показано, как маршрутизатор D узнает о хостах A, B и C? Существует два широких класса решений этой проблемы - реактивные и упреждающие, которые обсуждаются в следующих статьях. Реактивное изучение На рисунке 8 предположим, что хост A только что был включен, а сеть использует только динамическое обучение на основе передаваемого трафика данных. Как маршрутизатор D может узнать об этом недавно подключенном хосте? Одна из возможностей для A - просто начать отправлять пакеты. Например, если A вручную настроен на отправку всех пакетов по назначению, он не знает, как достичь к D, A должен отправить в хотя бы один пакет, чтобы D обнаружил его существование. Узнав A, D может кэшировать любую релевантную информацию на некоторое время - обычно до тех пор, пока A, кажется, отправляет трафик. Если A не отправляет трафик в течение некоторого времени, D может рассчитать запись для A в своем локальном кэше. Этот процесс обнаружения достижимости, основанный на фактическом потоке трафика, является реактивным открытием. С точки зрения сложности, реактивное обнаружение торгует оптимальным потоком трафика против информации, известной и потенциально переносимой в плоскости управления. Потребуется некоторое время, чтобы сработали механизмы реактивного обнаружения, то есть чтобы D узнал о существовании A, как только хост начнет посылать пакеты. Например, если хост F начинает посылать трафик в сторону а в тот момент, когда A включен, трафик может быть перенаправлен через сеть на D, но D не будет иметь информации, необходимой для пересылки трафика на канал, а следовательно, и на A. В течение времени между включением хоста A и обнаружением его существования пакеты будут отброшены-ситуация, которая будет казаться F в худшем случае сбоем сети и некоторым дополнительным джиттером (или, возможно, непредсказуемой реакцией по всей сети) в лучшем случае. Кэшированные записи со временем должны быть отключены. Обычно для этого требуется сбалансировать ряд факторов, включая размер кэша, объем кэшируемой информации об устройстве и частоту использования записи кэша в течение некоторого прошедшего периода времени. Время ожидания этой кэшированной информации и любой риск безопасности какого-либо другого устройства, использующего устаревшую информацию, являются основой для атаки. Например, если A перемещает свое соединение с D на E, информация, которую D узнал об A, останется в кэше D в течение некоторого времени. В течение этого времени, если другое устройство подключается к сети к D, оно может выдавать себя за A. Чем дольше действительна кэшированная информация, тем больше вероятность для выполнения этого типа атаки. Упреждающее изучение Некоторая информация о доступности может быть изучена заранее, что означает, что маршрутизатору не нужно ждать, пока подключенный хост начнет отправлять трафик, чтобы узнать об этом. Эта возможность имеет тенденцию быть важной в средах, где хосты могут быть очень мобильными; например, в структуре центра обработки данных, где виртуальные машины могут перемещаться между физическими устройствами, сохраняя свой адрес или другую идентифицирующую информацию, или в сетях, которые поддерживают беспроводные устройства, такие как мобильные телефоны. Здесь описаны четыре широко используемых способа упреждающего изучения информации о доступности: Протокол обнаружения соседей может выполняться между граничными сетевыми узлами (или устройствами) и подключенными хостами. Информация, полученная из такого протокола обнаружения соседей, может затем использоваться для введения информации о доступности в плоскость управления. Хотя протоколы обнаружения соседей широко используются, информация, полученная через эти протоколы, не используется широко для внедрения информации о доступности в плоскость управления. Информацию о доступности можно получить через конфигурацию устройства. Почти все сетевые устройства (например, маршрутизаторы) будут иметь доступные адреса, настроенные или обнаруженные на всех интерфейсах, обращенных к хосту. Затем сетевые устройства могут объявлять эти подключенные интерфейсы как достижимые места назначения. В этой ситуации доступным местом назначения является канал (или провод), сеть или подсеть, а не отдельные узлы. Это наиболее распространенный способ получения маршрутизаторами информации о доступности сетевого уровня. Хосты могут зарегистрироваться в службе идентификации. В некоторых системах служба (централизованная или распределенная) отслеживает, где подключены хосты, включая такую информацию, как маршрутизатор первого прыжка, через который должен быть отправлен трафик, чтобы достичь их, сопоставление имени с адресом, услуги, которые каждый хост способен предоставить, услуги, которые каждый хост ищет и/или использует, и другую информацию. Службы идентификации распространены, хотя они не всегда хорошо видны сетевым инженерам. Такие системы очень распространены в высокомобильных средах, таких как беспроводные сети, ориентированные на потребителя. Плоскость управления может извлекать информацию из системы управления адресами, если она развернута по всей сети. Однако это очень необычное решение. Большая часть взаимодействия между плоскостью управления и системами управления адресами будет осуществляться через локальную конфигурацию устройства; система управления адресами назначает адрес интерфейсу, а плоскость управления выбирает эту конфигурацию интерфейса для объявления в качестве достижимого назначения. Объявление достижимости и топология После изучения информации о топологии и доступности плоскость управления должна распространить эту информацию по сети. Хотя метод, используемый для объявления этой информации, в некоторой степени зависит от механизма, используемого для расчета путей без петель (поскольку какая информация требуется, где рассчитывать пути без петель, будет варьироваться в зависимости от того, как эти пути вычисляются), существуют некоторые общие проблемы и решения, которые будут применяться ко всем возможным системам. Основные проблемы заключаются в том, чтобы решить, когда объявлять о доступности и надежной передаче информации по сети. Решение, когда объявлять достижимость и топологию Когда плоскость управления должна объявлять информацию о топологии и доступности? Очевидным ответом может быть "когда это будет изучено", но очевидный ответ часто оказывается неправильным. Определение того, когда объявлять информацию, на самом деле включает в себя тщательный баланс между оптимальной производительностью сети и управлением объемом состояния плоскости управления. Рисунок 9 будет использован для иллюстрации. Предположим, хосты A и F отправляют данные друг другу почти постоянно, но B, G и H вообще не отправляют трафик в течение некоторого длительного периода. В этой ситуации возникают два очевидных вопроса: Хотя для маршрутизатора C может иметь смысл поддерживать информацию о доступности для B, почему D и E должны поддерживать эту информацию? Почему маршрутизатор E должен поддерживать информацию о доступности хоста A? С точки зрения сложности существует прямой компромисс между объемом информации, передаваемой и удерживаемой в плоскости управления, и способностью сети быстро принимать и пересылать трафик. Рассматривая первый вопрос, например, компромисс выглядит как способность C отправлять трафик из B в G при его получении по сравнению с C, поддерживающим меньше информации в своих таблицах пересылки, но требующимся для получения информации, необходимой для пересылки трафика через некоторый механизм при получении пакетов, которые должны быть переадресованы. Существует три общих решения этой проблемы. Проактивная плоскость управления: плоскость управления может проактивно обнаруживать топологию, вычислять набор путей без петель через сеть и объявлять информацию о достижимости. Упреждающее обнаружение топологии с реактивной достижимостью: плоскость управления может проактивно обнаруживать топологию и рассчитывать набор путей без петель. Однако плоскость управления может ждать, пока информация о доступности не потребуется для пересылки пакетов, прежде чем обнаруживать и / или объявлять о доступности. Реактивная плоскость управления: плоскость управления может реактивно обнаруживать топологию, вычислять набор путей без петель через сеть (обычно для каждого пункта назначения) и объявлять информацию о доступности. Если C изучает, сохраняет и распределяет информацию о доступности проактивно или в этой сети работает проактивная плоскость управления, то новые потоки трафика могут перенаправляться через сеть без каких-либо задержек. Если показанные устройства работают с реактивной плоскостью управления, C будет: Подождите, пока первый пакет в потоке не направится к G (к примеру) Откройте путь к G с помощью некоторого механизма Установите путь локально Начать пересылку трафика в сторону G Тот же процесс должен быть выполнен в D для трафика, перенаправляемого к A от G и F (помните, что потоки почти всегда двунаправленные). Пока плоскость управления изучает путь к месту назначения, трафик (почти всегда) отбрасывается, потому что сетевые устройства не имеют никакой информации о пересылке для этого достижимого места назначения (с точки зрения сетевого устройства достижимый пункт назначения не существует). Время, необходимое для обнаружения и создания правильной информации о пересылке, может составлять от нескольких сотен миллисекунд до нескольких секунд. В это время хост и приложения не будут знать, будет ли соединение в конечном итоге установлено, или если место назначения просто недоступно. Плоскости управления можно в целом разделить на: Проактивные системы объявляют информацию о доступности по всей сети до того, как она понадобится. Другими словами, проактивные плоскости управления хранят информацию о доступности для каждого пункта назначения, установленного на каждом сетевом устройстве, независимо от того, используется эта информация или нет. Проактивные системы увеличивают количество состояний, которые передаются и хранятся на уровне управления, чтобы сделать сеть более прозрачной для хостов или, скорее, более оптимальной для краткосрочных и чувствительных ко времени потоков. Реактивные системы ждут, пока информация о пересылке не потребуется для ее получения, или, скорее, они реагируют на события в плоскости данных для создания информации плоскости управления. Реактивные системы уменьшают количество состояний, передаваемых на уровне управления, делая сеть менее отзывчивой к приложениям и менее оптимальной для кратковременных или чувствительных ко времени потоков. Как и все компромиссы в сетевой инженерии, описанные здесь два варианта, не являются исключительными. Можно реализовать плоскость управления, содержащую некоторые проактивные и некоторые реактивные элементы. Например, можно построить плоскость управления, которая имеет минимальные объемы информации о доступности, описывающей довольно неоптимальные пути через сеть, но которая может обнаруживать более оптимальные пути, если обнаруживается более длительный или чувствительный к качеству обслуживания поток. Что почитать дальше? Советуем материал про реактивное и упреждающее распределение достижимости в сетях.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59