По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Компания Cisco сейчас, безусловно, является лидером среди производителей сетевого оборудования, однако немалую часть этого рынка занимает оборудование компаний Huawei и Juniper, в которых команды для CLI отличаются от команд в Cisco IOS. Поэтому, мы собрали в таблицы основные и наиболее часто используемые команды для траблшутинга у Cisco и привели их аналоги в Huawei и Juniper. Поэтому, если вы знакомы с системой IOS, то эта таблица поможет на начальных этапах освоиться в других ОС. Список основных команд, конечно, шире, поэтому если мы забыли упомянуть какие-то команды, напишите их комментариях. Cisco Huawei show display traceroute tracert configure terminal system-view exit quit end return no undo reload reboot erase delete hostname sysname enable super disable super 0 write memory / copy running-config startup-config save show ip route display ip routing-table show flash dir flash: clear reset show logging display logbuffer write terminal / show run display current-configuration show startup display saved-configuration show tech display diagnostic-information show ip nat translation display nat session enable secret super pass cipher snmp-server snmp-agent router ospf ospf router rip rip router bgp bgp show ospf neighbours display ospf peer show interfaces display interface show version display version show history display history-command show access-list display acl all shop ip nat translations display nat session all show mac address-table display mac-address show spanning-tree display stp debug / no debug debugging / undo debugging Получается как-то так. А если сравнить команды Cisco и Juniper? Cisco Juniper show run show configuration show history show cli history show running-config show configuration show ip route show route show ip interface brief show interface terse show controller show interfaces intfc extensive show tech-support request support info reload request system reboot clock set set date show ip bgp show route protocol bgp show ip bgp neighbors show ip bgp neighbor show ip bgp summary show bgp summary clear ip bgp clear bgp neighbor show ip ospf database show ospf database show ip ospf interface show ospf interface show ip ospf neighbor show ospf neighbor show ip traffic show system statistic show logging show log no delete
img
Машинное обучение - это метод анализа данных, который автоматизирует построение аналитической модели. Это отрасль искусственного интеллекта, основанная на идее, что системы могут обучаться на основе данных, выявлять закономерности и принимать решения с минимальным вмешательством человека. Эволюция машинного обучения Из-за новых вычислительных технологий машинное обучение сегодня отличается от машинного обучения в прошлом. Оно основывается на распознавании образов и теории, что компьютеры могут обучаться, не будучи запрограммированы для выполнения конкретных задач; исследователи, интересующиеся искусственным интеллектом, хотели посмотреть, смогут ли компьютеры обучаться, основываясь на базе данных. Итеративный аспект машинного обучения важен, так как модели, подвергающиеся воздействию новых данных, способны самостоятельно адаптироваться. Они учатся от предыдущих вычислений для получения надежных и воспроизводимых решений и результатов. Хотя многие алгоритмы машинного обучения существуют уже давно, способность автоматически применять сложные математические вычисления к объемным данным - снова и снова, все быстрее и быстрее - это новейшая разработка. Вот несколько широко разрекламированных примеров приложений машинного обучения, с которыми вы можете быть знакомы: Сильно раскрученная, самоуправляемая машина Google. Суть машинного обучения. Онлайн рекомендации, такие, как у Amazon и Netflix. Приложения машинного обучения для повседневной жизни. Знание того, что клиенты говорят о вас в соцсетях. Машинное обучение в сочетании с созданием лингвистических правил. Обнаружение мошенничества. Одно из наиболее очевидных, важных применений в современном мире. Почему машинное обучение важно? Возобновление интереса к машинному обучению обусловлено теми же факторами, которые сделали анализ данных и Байесовский анализ более популярными, чем когда-либо. Растущие объемы и разнообразие доступных данных, вычислительная обработка, которая является более дешевой и мощной; доступное хранилище для хранения данных - все эти аспекты означают, что можно быстро и автоматизировано производить модели, которые могут анализировать более объемные и сложные данные и обеспечивать быстрые и более точные результаты - даже на очень больших объемах. А благодаря созданию точных моделей у организации больше шансов определить выгодные возможности или избежать неизвестных рисков. Что необходимо для создания эффективных систем машинного обучения? Возможности подготовки данных. Алгоритмы - базовый и продвинутый. Автоматизация и итерационные процессы. Масштабируемость. Ансамблевое моделирование. Интересные факты В машинном обучении, цель называется - «ярлык». В статистике, цель называется «зависимой переменной». Переменная в статистике называется – «функция в машинном обучении». Преобразование в статистике называется – «создание функции в машинном обучении». Кто использует машинное обучение? Большинство отраслей промышленности, работающих с большими объемами данных признали ценность технологии машинного обучения. Подбирая идеи из этих данных - часто в режиме реального времени - организации способны более эффективно работать или получить преимущество перед конкурентами. Финансовые услуги Банки и другие предприятия финансовой индустрии используют технологию машинного обучения для двух ключевых целей: для выявления важных данных и предотвращения мошенничества. Они могут определить инвестиционные возможности или помочь инвесторам узнать, когда торговать. Интеллектуальный анализ данных может также идентифицировать клиентов с профилями высокого риска или использовать кибер-наблюдение, чтобы точно определить признаки мошенничества. Правительство Правительственные учреждения, такие как общественная безопасность и коммунальные службы, особенно нуждаются в машинном обучении, поскольку у них есть несколько источников данных, из которых можно получить информацию для полного понимания. Например, анализ датчика данных определяет пути повышения эффективности и экономии средств. Машинное обучение также может помочь обнаружить мошенничество и минимизировать кражу личных данных. Здравоохранение Машинное обучение является быстро развивающимся направлением в отрасли здравоохранения, благодаря появлению переносных устройств и датчиков, которые могут использовать данные для оценки состояния здоровья пациента в режиме реального времени. Эта технология также может помочь медицинским экспертам анализировать данные для выявления тенденций или «красных флажков», которые могут привести к улучшению диагностики и лечения. Розничная торговля Веб-сайты, рекомендующие товары, которые могут вам понравиться на основе предыдущих покупок, используют машинное обучение для анализа вашей истории покупок. Ритейлеры полагаются на машинное обучение для сбора данных, их анализа и использования для персонализации процесса совершения покупок, проведения маркетинговой кампании, оптимизации цен, планирования поставок товаров, а также для понимания потребностей клиентов. Нефть и газ Поиск новых источников энергии. Анализ минералов в почве. Прогнозирование неисправности датчика НПЗ. Оптимизация распределения нефти, чтобы сделать ее более эффективной и рентабельной. Количество вариантов использования машинного обучения для этой отрасли огромно - и продолжает расти. Транспорт Анализ данных для определения закономерностей и тенденций является ключевым для транспортной отрасли, которая полагается на повышение эффективности маршрутов и прогнозирование потенциальных проблем для повышения прибыльности. Анализ данных и аспекты моделирования машинного обучения являются важными инструментами для компаний доставки, общественного транспорта и других транспортных организаций. Каковы популярные методы машинного обучения? Двумя наиболее широко распространенными методами машинного обучения являются контролируемое обучение и неконтролируемое обучение, но существуют и другие методы машинного обучения. Вот обзор самых популярных типов. Контролируемое обучение Алгоритмы контролируемого обучения изучаются с использованием маркированных примеров, таких как ввод, в котором известен желаемый результат. Например, единица оборудования может иметь точки данных, помеченные как «F» (ошибка) или «R» (работа). Алгоритм обучения получает набор входных данных вместе с соответствующими правильными выходными данными, а алгоритм обучается путем сравнения своих фактических выходных данных с правильными выходными данными, чтобы найти ошибки. Затем он соответствующим образом модифицирует модель. С помощью таких методов, как классификация, регрессия, прогнозирование и повышение градиента, контролируемое обучение использует шаблоны для прогнозирования значений метки на дополнительных немаркированных данных. Контролируемое обучение обычно используется в приложениях, где исторические данные предсказывают вероятные будущие события. Например, он может предвидеть, когда транзакции по кредитным картам могут быть мошенническими или какой клиент страхования может подать иск. Полуконтролируемое обучение Полуконтролируемое обучение используется для тех же приложений, что и контролируемое обучение. Но для обучения оно использует как помеченные, так и непомеченные данные, как правило, это небольшой объем помеченных данных с большим количеством немеченых данных (поскольку немеченые данные дешевле и требуют меньше усилий для их получения). Этот тип обучения может использоваться с такими методами, как классификация, регрессия и прогнозирование. Полуконтролируемое обучение полезно, когда стоимость, связанная с маркировкой, слишком высока, чтобы учесть полностью помеченный процесс обучения. Ранние примеры этого включают идентификацию лица человека по веб-камере. Неконтролируемое обучение Неконтролируемое обучение используется в отношении данных, которые не имеют исторических меток. Система не сказала «правильный ответ». Алгоритм должен выяснить, что показывается. Цель состоит в том, чтобы исследовать данные и найти некоторую структуру внутри. Неуправляемое обучение хорошо работает на транзакционных данных. Например, он может идентифицировать сегменты клиентов со схожими признаками, которые затем могут обрабатываться аналогично в маркетинговых кампаниях. Или он может найти основные атрибуты, которые отделяют сегменты клиентов друг от друга. Популярные методы включают самоорганизующиеся таблицы, отображение ближайших соседей, кластеризацию k-средств и разложение по сингулярным числам. Эти алгоритмы также используются для сегментирования текстовых тем, рекомендации элементов и резко отличающихся значений данных. Усиленное обучение Усиленное обучение часто используется для робототехники, игр и навигации. Благодаря обучению с подкреплением алгоритм с помощью проб и ошибок обнаруживает, какие действия приносят наибольшее вознаграждение. Этот тип обучения состоит из трех основных компонентов: агент (учащийся или лицо, принимающее решения), среда (все, с чем взаимодействует агент) и действия (что может делать агент). Цель состоит в том, чтобы агент выбирал действия, которые максимизируют ожидаемое вознаграждение в течение заданного периода времени. Агент достигнет цели намного быстрее, следуя хорошей политике. Таким образом, цель усиленного обучения состоит в том, чтобы изучить лучшую политику. Каковы различия между интеллектуальным анализом данных, машинным обучением и глубоким обучением? Хотя все эти методы имеют одну и ту же цель - извлекать идеи, шаблоны и зависимости, которые можно использовать для принятия решений - у них разные подходы и возможности. Сбор данных (Data Mining) Интеллектуальный анализ данных можно рассматривать как набор множества различных методов для извлечения информации из данных. Он может включать традиционные статистические методы и машинное обучение. Интеллектуальный анализ применяет методы из разных областей для выявления ранее неизвестных шаблонов из данных. Он может включать в себя статистические алгоритмы, машинное обучение, анализ текста, анализ временных рядов и другие области аналитики. Интеллектуальный анализ данных также включает изучение, практику хранения и обработки данных. Машинное обучение Основное отличие машинного обучения заключается в том, что, как и в статистических моделях, цель состоит в том, чтобы понять структуру данных - подогнать теоретические распределения к хорошо понятным данным. Таким образом, под статистическими моделями стоит теория, которая математически доказана, но для этого необходимо, чтобы данные также соответствовали определенным строгим гипотезам. Машинное обучение развивалось на основе способности использовать компьютеры для проверки данных на предмет структуры, даже если у нас нет теории о том, как эта структура выглядит. Испытанием модели машинного обучения является ошибка проверки новых данных, а не теоретическое испытание, которое подтверждает нулевую гипотезу. Поскольку машинное обучение часто использует итеративный подход для изучения данных, обучение может быть легко автоматизировано. Передача через данные проходит, пока не будет найден надежный шаблон. Глубокое изучение (Deep learning) Глубокое обучение сочетает в себе достижения в области вычислительной мощности и специальных типов нейронных сетей для изучения сложных моделей больших объемов данных. В настоящее время методы глубокого обучения подходят для идентификации объектов в изображениях и слов в звуках. В настоящее время исследователи стремятся применить эти успехи в распознавании образов для решения более сложных задач, таких как автоматический перевод языка, медицинские диагнозы и множество других важных социальных и деловых проблем. Как это работает? Чтобы получить максимальную отдачу от машинного обучения, вы должны знать, как сочетать лучшие алгоритмы с подходящими инструментами и процессами. Алгоритмы: графические пользовательские интерфейсы помогают создавать модели машинного обучения и реализовывать итеративный процесс машинного обучения. Алгоритмы машинного обучения включают в себя: Нейронные сети Деревья решений Случайные леса Ассоциации и обнаружение последовательности Градиент повышения и расфасовки Опорные векторные машины Отображение ближайшего соседа K-средства кластеризации Самоорганизующиеся карты Методы локальной оптимизации поиска Максимальное ожидание Многомерные адаптивные регрессионные сплайны Байесовские сети Оценка плотности ядра Анализ главных компонентов Сингулярное разложение Смешанные Гауссовские модели Последовательное сопроводительное построение правил Инструменты и процессы: Как мы уже знаем, это не просто алгоритмы. В конечном счете, секрет получения максимальной отдачи от ваших объемных данных заключается в объединении лучших алгоритмов для поставленной задачи с: Комплексным качеством данных и их управлением GUI для построения моделей и процессов Интерактивным исследованием данных и визуализацией результатов модели Сравнением различных моделей машинного обучения для быстрого определения лучшей Автоматизированной оценкой группы для выявления лучших исполнителей Простым развертыванием модели, что позволяет быстро получать воспроизводимые и надежные результаты Интегрированной комплексной платформой для автоматизации процесса принятия решений
img
Kubernetes и Red Hat OpenShift сегодня являются двумя ведущими инструментами оркестрации контейнеров на рынке. В этой статье мы обсудим эти инструменты и различия между ними. Большинство производственных сред начали использовать контейнеры, поскольку они легко масштабируемы, экономичны, лучше, чем виртуальные машины, и быстрее развертываются. Конечно, проще работать с 10-20 контейнерами, но представьте, если ваша производственная среда кластера Kubernetes имеет сотни контейнеров. Управление жизненным циклом контейнера с параллельным запуском нескольких контейнеров становится сложной задачей. Поэтому для управления всем автоматизированным развертыванием, масштабированием, организацией и управлением контейнерами необходима платформа/инструмент для управления контейнерами. Сравнение Kubernetes с OpenShift было бы несправедливым, поскольку эти инструменты оркестровки контейнеров представляют собой два разных проекта. Kubernetes - проект с открытым исходным кодом, в то время как OpenShift - продукт предлагаемый Red Hat. Сравнивать Kubernetes с OpenShift - все равно что сравнивать двигатель автомобиля с автомобилем. Это связано с тем, что сам Kubernetes является основной частью общей архитектуры OpenShift. Сначала кратко разберемся, что такое Kubernetes и OpenShift. Что такое Kubernetes? В настоящее время Kubernetes является наиболее популярным инструментом оркестровки контейнеров с открытым исходным кодом и широко используется для автоматического развертывания и масштабирования контейнеров. Этот инструмент с открытым исходным кодом был создан в 2014 году компанией Google и разработан облачным вычислительным фондом с использованием языка программирования Go. Kubernetes имеет архитектуру master-slave, в кластере Kubernetes есть главный узел и множество рабочих узлов. Внутри каждого рабочего узла будет работать несколько деталей, которые представляют собой не что иное, как группу контейнеров, объединенных как рабочая единица. Kubernetes использует YAML для определения ресурсов, отправляемых на сервер API для создания самого приложения. Преимущества Kubernetes Поскольку Kubernetes имеет открытый исходный код, он может свободно использоваться для любой платформы Имеет огромное активное сообщество разработчиков и инженеров, что помогает непрерывно разрабатывать новые функции Для избегания простоев вы можете легко выполнить откат или новое развертывание Для распределения сетевого трафика он предлагает возможности балансировки нагрузки Он поддерживает различные языки и структуры программирования, что обеспечивает гибкость для разработчиков и администраторов Kubernetes помогает очень эффективно использовать ресурсы инфраструктуры и сокращать общие затраты Она поставляется с панелью мониторинга по умолчанию, которая предлагает кучу информации, достаточной, чтобы следить за состоянием кластера. Red Hat OpenShift OpenShift - контейнерная платформа корпоративного уровня, разработанная Red Hat. Написан на языках программирования Go и AngularJS, а первоначальный релиз вышел в 2011 году. Red Hat OpenShift можно использовать как для облачных, так и для традиционных приложений. За кулисами Red Hat OpenShift работает Kubernetes, что позволяет запускать приложения внутри контейнеров. OpenShift поставляется с панелью веб-интерфейса и CLI, которая помогает разработчикам и программистам создавать свои коды приложений. Это также позволяет инженерам DevOps управлять и контролировать кластер Kubernetes. Преимущества Red Hat OpenShift: Поддерживает инициативу открытых контейнеров (OCI - open container initiative) для размещения контейнеров и среды выполнения Содержит множество исправлений проблем безопасности, дефектов и производительности Может быстро и гибко создавать и развертывать приложения Легко интегрировать со многими другими инструментами DevOps Проверяет несколько подключаемых модулей сторонних производителей для каждой версии Использование унифицированной консоли на Red Hat позволяет быстро внедрять и применять политики Поддерживает Prometheus и Grafana, что помогает в мониторинге кластера Его можно легко использовать с любым поставщиком облачных технологий или в локальной среде. OpenShift против Kubernetes 1. Открытый исходный код по сравнению с коммерческим Наиболее фундаментальное отличие Kubernetes от OpenShift заключается в том, что Kubernetes - проект с открытым исходным кодом, а OpenShift - коммерческий продукт корпоративного уровня. Это означает, что Kubernetes является самоподдерживаемым инструментом. В случае, если в этом инструменте выявлена какая-либо проблема или ошибка, люди обращаются к сообществу Kubernetes, которое состоит из многих разработчиков, администраторов, архитекторов и т. д. В то время как в OpenShift вы получаете хороший платный вариант поддержки для устранения любой проблемы с этой подпиской на продукт Red Hat. Подписка OpenShift позволяет управлять общедоступной, частной и виртуальной инфраструктурой с помощью Red Hat CloudForms. 2. Развертывание Развертывание приложения в производственной среде является решающим этапом процесса DevOps, и OpenShift делает его очень простым. Он автоматически выполняет каждый шаг от разработки до развертывания, поэтому вам не нужно беспокоиться о каждом шаге в конвейере CI/CD, чтобы сделать все вручную. Даже будучи новичком, вы будете чувствовать себя очень комфортно, используя OpenShift при конвеерном развертывания приложений. В OpenShift развертывание выполняется с помощью команды DeploymentConfig. С другой стороны, развертывание в Kubernetes сложнее и часто выполняется только экспертом. Необходимо настроить каждый шаг конвейера для развертывания приложения вручную. В случае развертывания приложений в Kubernetes используются объекты развертывания и могут обрабатывать несколько параллельных обновлений. 3. Управление В Kubernetes можно управлять кластером с помощью панели мониторинга по умолчанию. Но из-за его ограниченных возможностей и базового пользовательского интерфейса, по мере роста размера кластера, чтобы легко управлять кластером вам придется добавить более расширенные инструменты, такие как Istio, Prometheus, Grafana. Red Hat OpenShift предоставляет удобную панель управления кластером. Веб-консоль OpenShift предоставляет возможности для выполнения некоторых расширенных операций в кластере для улучшения управления. OpenShift также предлагает интегрировать кластер со стеком EFK и Istio. И, наконец, доступные в OpenShift плейбуки Ansible и установщик помогают плавно управлять кластером. 4. Масштабируемость Независимо от того, является ли кластер виртуализированным или он развернут на голом железе, в нем будет несколько виртуальных машин. В Kubernetes добавление виртуальных машин занимает много времени. Он требует от разработчиков создания для него сценариев YAML. Тогда как в OpenShift масштабирование выполняется без особых усилий. OpenShift позволяет быстрее выводить виртуальные машины в кластер с помощью доступных установщиков и плейбуков Ansible. Кроме того, процесс масштабирования в OpenShift тоже прост. 5. Гибкость Kubernetes поставляется с большой гибкостью, так как нет фиксированного способа работы с ним. Для запуска Kubernetes можно использовать любую операционную систему с большими ограничениями. Kubernetes помогла многим организациям выйти из устаревших архитектур, поскольку они не отвечали текущим потребностям рынка. При работе с OpenShift нельзя использовать все операционные системы. В OpenShift можно использовать только дистрибутивы Red Hat, FedoraOS и CentOS. 6. Безопасность Политики безопасности в OpenShift строже по сравнению с Kubernetes. Например, OpenShift не позволяет запускать контейнеры как корневые. Это также ограничивает использование пользователями многих официальных образов, представленных на DockerHub. Итак, во время работы с OpenShift сначала нужно будет узнать о его политиках безопасности. Но из-за этих ограничений, возможности аутентификации и авторизации в OpenShift более надежны, чем Kubernetes. В то время как в Kubernetes настройка надлежащей возможности аутентификации и авторизации потребует много усилий. В отличие от OpenShift, кластеры Kubernetes могут иметь много уязвимых образов, если в кластер не интегрированы средства сканирования контейнеров. Kubernetes предлагает функции управления доступом на основе ролей (RBAC - role-based access control), но этого недостаточно для расширенного уровня безопасности, необходимого в производственных средах. Так, по сравнению с OpenShift, в Kubernetes ещё предстоит сделать много улучшений в плане безопасности. 7. Веб-интерфейс Для выполнения всей работы по администрированию кластера необходим подходящий и простой в использовании веб-интерфейс, что и предлагает OpenShift. У него есть простая форма аутентификации для каждого пользователя. После входа пользователь получает полную визуализацию кластера, которую очень легко прочитать и понять. OpenShift имеет удобную веб-консоль, которая позволяет инженерам DevOps выполнять задачи Kubernetes, а операционным группам - комфортно контролировать приложение. Элемент управления имеет несколько возможностей типа построения, развертывания, обновления, масштабирования, раскрытия и т.д., которые могут быть реализованы одним нажатием кнопки. Kubernetes поставляется с базовой панелью управления, которая может помочь только с основными задачами. Кроме того, панель мониторинга не очень удобна для пользователей по сравнению с другими панелями мониторинга, доступными на рынке. Именно поэтому инженеры DevOps предпочли бы интегрировать инструментальную панель Kubernetes по умолчанию с другими инструментами визуализации, такими как Prometheus и Grafana. Подводя итог, приведем таблицу различий между Red Hat OpenShift и Kubernetes: ОтличияKubernetesOpenShiftРазработчикCloud-Native Computing FoundationRed Hat SoftwareДата первого релиза7 июня 20144 мая 2011Язык программированияGoGo, Angular, JSУправлениеСложное управления контейнерамиИспользование ImageStreams для упрощения управления несколькими контейнерамиРазвертываниеПоддерживает все облачные и Linux платформыПоддерживает только дистрибутивы на базе RedHat: CentOS и FedoraГибкостьС открытым исходным кодом, соответственно гибкийОграниченная гибкостьБезопасностьМожно легко управлять уровнем безопасностиСтрогие политики безопасностиСетевая поддержкаЕму не хватает хорошего сетевого решения, но он позволяет добавлять сетевые плагины сторонних производителей.Поставляется с собственным сетевым решениемОбучениеСложен для начинающих, больше подходит для профессиональных DevOpsПодходит для начинающих Заключение Все дело было в Kubernetes, OpenShift и их различиях. Обе платформы оркестрации контейнеров востребованы в ИТ-отрасли. Таким образом, в зависимости от ваших требований, вы можете выбрать наиболее подходящую платформу оркестрации контейнеров для вашей организации. Если вам нужна гибкость с вашими проектами, то скорее всего должны выбрать Kubernetes. Но если вы можете следовать определенному подходу и хотите использовать платформу оркестрации контейнеров с простотой развертывания и управления, OpenShift - лучший выбор. Так же если вы уже опытный DevOps и хотите попробовать что-то новое, то можно попытаться перейти на Kubernetes. Если же делаете первые шаги на поприще DevOps, выберите OpenShift, так как он сделает большую часть дел за вас.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59