По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Зачем нужно шифрование и насколько оно важно? Функционирование любых цифровых сервисов невозможно без защиты данных. Еще совсем немного времени назад эта проблема не стояла так остро, так в основной массе устройств использовались относительно защищенные каналы связи. Типичный пример - телефонный кабель между персональным компьютером и провайдером. Даже, если по нему передаются незашифрованные данные, то их похитить затруднительно из-за объективных сложностей физического доступа к телефонной линии, особенно когда она проложена под землей, как это делается в городах. Теперь же, когда все, включая даже финансовые переводы, делается с мобильных устройств, ни о какой защите канала связи не может быть и речи, причем, так как радиоэфир доступен каждому. Значительное количество Wi-Fi карт довольно просто переводятся в режим мониторинга и могут принимать данные, передаваемые другими устройствами. Выход из этой ситуации заключается в использовании совершенных алгоритмов шифрования. Причем к этому решения одновременно пришли многие IT-разработчики в мире. Совершенно определенно, что алгоритмы шифрования должны быть стандартными, принятыми во всех странах мира, так как интернет глобален. При несоблюдении этого правила, то, что передается одним сервером, уже не может быть принято другим, так как алгоритм шифрования не известен. Итак, теперь понятно, что без общепринятых, сертифицированных и надежных алгоритмов шифрования не обойтись. Алгоритм 3DES или Triple DES Самый первый, принятый для использования в сети интернет алгоритм шифрования. 3DES разработан Мартином Хеллманом в 1978 году. Учитывая уже почетный возраст для IT-технологий, по оценкам НИСТ (Национальный Институт Стандартов и Технологий) он останется надежным до 2030-х годов. Несмотря на достаточное количество более современных и значительно более криптостойких алгоритмов, банковские системы продолжают использовать именно старый добрый 3DES, что косвенно говорит о его высокой надежности. Также он активно используется в сети интернет во всем мире. Рассмотрим его работу подробнее. Ну, а самое интересное - почти все более современные алгоритмы шифрования представляют собой доработанный DES. Даже утвержден неформальный термин, как "DES-подобные криптографические системы". В 1977 совместными усилиями многих разработчиков из компании IBM создается алгоритм DES (Data Encryption Standard, "Данные Шифрования Стандарт"), который утверждается правительством США. Всего через год на его основе появится доработанный вариант - 3DES, который предложит Мартин Хеллман и он тоже будет утвержден, как улучшенная версия. DES работает на так называемой сети Фейстеля. Это ни что не иное, как модульные вычисления - многократно повторяемая простая вычислительная операция на нескольких логических ячейках. Именно с этого конца смотрят хакеры, когда для подбора ключей используются майнинг-фермы на процессорах с тысячами ядер CUDA (в видеокартах). Так какие же вычисления выполняет "взломщик"? Ответ - разложение на простые множители или факторизацию с некоторыми дополнительными операциями. Для числа из трех знаков, разложение на простые множители займет несколько минут ручного пересчета, или миллисекунды работы компьютера. Пример - число 589, для которого ключ будет равен 19*31=589. На самом деле, алгоритмы шифрования работают очень просто. Попробуем методом факторизации, известным очень давно, скрыть ключ. Пусть ключом у нас будет число длиной 30 знаков (при работе с байтами и битами это могут быть и буквы). Добавим к нему еще одно число такой же (или отличающейся, это неважно) длины и перемножим их друг на друга: 852093601- 764194923 - 444097653875 х 783675281 - 873982111 - 733391653231 = 667764693545572117833209455404487475025224088909394663420125 Нам сейчас важно то, что на это перемножение мы затратили ничтожную вычислительную мощность. С таким простым умножением можно справиться даже без калькулятора, затратив несколько часов времени. Калькулятор, а там более мощный компьютер сделает это за тысячную долю секунды. Если же мы поставим обратную задачу - восстановить исходные множители, то на это даже на мощном компьютере уйдут годы, и это время будет увеличиваться квадратично по мере прибавления знаков в исходных числах. Таким образом, мы получили одностороннюю функцию, являющуюся базовой для всех распространенных алгоритмов шифрования. Именно на односторонних функциях (хеширование) построен DES, 3DES и последующие (AES) способы защиты информации. Перейдем к их более подробному рассмотрению. Алгоритм AES На данный момент времени самый распространенный алгоритм шифрования в мире. Название расшифровывается, как Advanced Encryption Standard (расширенный стандарт шифрования). AES утвержден национальным институтом технологий и стандартов США в 2001 году и в активном применении находится до сих пор. Максимальная длина шифроключа - 256 бит, что означает, что пароль может иметь до 32 символов из таблицы на 256 значений (кириллица, латиница, знаки препинания и другим символы). Это достаточно надежно даже для современного мира с мощными компьютерными мощностями для перебора (брутфорса). В 16-ричной системе счисления AES может иметь и более длинные ключи, но криптостойкость их точно такая же, ибо конечное число всех возможных вариантов идентичное, вне зависимости от системы счисления. Специалисты не раз отмечали, что в отличие от других шифров AES имеет простое математическое описание, но такие высказывания подвергались критике и опровергались математиками с указаниями ошибок в уравнениях. Тем не менее, Агентство Национальной Безопасности США рекомендует AES для защиты самых важных сведений, составляющих государственную тайну, а это тоже отличный показатель надежности. Ниже приведена блок-схема шифрования AES. Отметим, что разработка алгоритмов шифрования дело не столь сложное, как кажется на первый взгляд. Например, по заверению многих студентов при прохождении предмета "основы криптографии" они разрабатывали собственные "несложные" алгоритмы, наподобие DES. Кстати, все тот же DES имеет множество "клонов" с небольшими нововведениями разработчиков в России и других странах. Российские алгоритмы шифрования Одним из первых шифров, который утверждался официально, стал принятый в 1990 году ГОСТ 28147-89, разработанный на все той же сети Фейстеля. Конечно, алгоритм был разработан почти на целое поколение раньше, и использовался в КГБ СССР, просто необходимость его обнародования возникла только в эпоху цифровых данных. Официально открытым шифр стал только в 1994 году. Шифр "Калина" (тот же ГОСТ 28147-89 для России и ДСТУ ГОСТ 28147:2009 для Украины) будет действовать до 2022 года. За этот период он постепенно будет замещен более современными системами шифрования, такими, как "Магма" и "Кузнечик", поэтому для более подробного обзора в этой статье интересны именно они. "Магма" и "Кузнечик" стандартизованы ГОСТ 34.12-2018. Один документ описывает сразу оба стандарта. "Кузнечик" шифрует любые данные блоками по 128 бит, "Магма" - 64 бита. При этом в "Кузнечике" кусок данных в 128 бит шифруется ключом по 256 бит (34 байта, или пароль в 32 знака с выбором из 256 символов). Миллионы блоков данных шифруются одним ключом, поэтому его не нужно передавать с каждым сообщением заново. То, что ключ занимает больший объем, чем данные, никак не сказывается на работе алгоритма, а только дополнительно придает ему надежности. Конечно, "Кузнечик" разработан не для тех систем, где на счету каждый килобайт, как например, в узкополосной радиосвязи. Он оптимально подходит для применения в IT-сфере. Описание математического аппарата "Кузнечика" - тема отдельной статьи, которая будет понятна лишь людям хотя бы с начальным знанием математики, поэтому мы этого делать не будем. Отметим лишь некоторые особенности: Фиксированная таблица чисел для нелинейного преобразования (приведена в ГОСТ 34.12-2018). Фиксированная таблица для обратного нелинейного преобразования (также приведена в ГОСТ 34.12-2018). Многорежимность алгоритма для способов разбивания шифруемого потока данных на блоки: режим имитовставки, гаммирования, режим простой замены, замены с зацеплением, гаммирования с обратной связью. Помимо шифрования данных "Кузнечик" и "Магма" могут быть использованы для генерации ключей. Кстати, именно в этом была обнаружена их уязвимость. Так, на конференции CRYPTO 2015 группа специалистов заявила, что методом обратного проектирования им удалось раскрыть алгоритм генерации ключей, следовательно, они не являются случайной последовательностью, а вполне предсказуемы. Тем не менее, "Кузнечик" вполне может использоваться для ручного ввода ключа, а это полностью нивелирует данную уязвимость. Большое преимущество алгоритма "Кузнечик" - он может применяться без операционной системы и компьютера. Необходимы лишь маломощные микроконтроллеры. Этот способ описан в журнале Радиопромышленность том 28 №3. По той же технологии возможна разработка прошивок контроллеров и под другие алгоритмы шифрования. Такое решение под силу реализовать на аппаратной основе (микросхемы) даже в любительских условиях. Любительские разработки В конспирологических кругах распространено мнение об уязвимости стандартных алгоритмов шифрования, хотя они давно уже описаны математически и легко проверяются. Есть даже способ "майним биткоины на бумаге", то есть, используя карандаш и лист бумаги, давно было показано, как предварительно переведя данные в шестнадцатиричную систему, их зашифровать и расшифровать стандартным алгоритмом SHA-256, подробно изъяснив каждый момент на пальцах. Тем не менее, находятся люди, желающие разработать свой собственный алгоритм шифрования. Многие из них - студенты, изучающие криптографию. Рассмотрим некоторые интересные способы реализации таких шифров и передачи ключей. Использование картинки для составления ключа и передачи данных. Способ часто применяется для передачи небольших блоков, например ключей. Изменения (растр, фиксируемой программой шифрации/дешифрации) не должны быть заметны простому зрителю. Использование видео. Собственно, это вариант первого способа. Просто, в отличие от картинки, в видео можно зашифровать уже более значительный трафик, например, голосовой обмен в реальном времени. При этом требуется высокое разрешение картинки, что для современных мультимедийных устройств - не проблема. Встраивание данных в аудио. Разработано множество программных продуктов для решения данной задачи, получены соответствующие патенты, например, "Патент США 10,089,994" на "Аудио водяные знаки". Простые шифры замены на основе словарей, например, Библии, или менее известной литературы. Способ шифрования хорошо знаком по шпионским фильмам и наиболее прост для любительского применения. Динамичные ключи, автоматически изменяемые по параметрам устройства. Например, отслеживается 100 параметров ПК (объем диска, температура процессора, дата и время) и на их основе программа автоматически генерирует ключ. Способ очень удобен для автомобильных сигнализаций, считывающих все параметры по шине CAN. Способов шифровать данные огромное множество и все их можно разделить на шифр замены и шифр перестановки, а также комбинацию этих обоих способов. Алгоритмы шифрования и криптовалюты Совершенствование алгоритмов шифрования стало одним из основных факторов возникновения всемирного бума криптовалют. Сейчас уже очевидно, что технология блокчейн (в основе нее лежат все те же алгоритмы шифрования) будет иметь очень широкое применение в будущем. Для выработки криптовалют (майнинга) используются разнообразные компьютерные мощности, которые могут быть использованы для взлома различных алгоритмов шифрования. Именно поэтому в криптовалютах второго и последующих поколений эту уязвимость постепенно закрывают. Так Биткоин (криптовалюта первого поколения) использует для майнинига брутфорс SHA-256 и майнинг-ферма с небольшой перенастройкой может быть использована для взлома данного алгоритма. Эфириум, уже имеет свой собственный алгоритм шифрования, но у него другая особенность. Если для биткоина используются узкоспециализированные интегральные микросхемы (асики), неспособные выполнять никаких других операций, кроме перебора хешей в SHA-256, то эфириум "майнится" уже на универсальных процессорах с CUDA-ядрами. Не забываем, что криптовалюты только начали свое шествие по миру и в недалеком будущем эти недостатки будут устранены. Плата ASIC-майнера содержит одинаковые ячейки со специализированными процессорами для перебора строк по алгоритму шифрования SHA-256 Алгоритмы шифрования и квантовый компьютер Сделав обзор по современным алгоритмам шифрования, нельзя не упомянуть такую тему, как квантовый компьютер. Дело в том, что его создатели то и дело упоминают о "конце всей криптографии", как только квантовый компьютер заработает. Это было бы недостойно обсуждения в технических кругах, но такие заявления поступают от гигантов мировой индустрии, например транснациональной корпорации Google. Квантовый компьютер обещает иметь чрезвычайно высокую производительность, которая сделает бесполезной криптографию, так как любое шифрование будет раскрываться методом брутфорса. Учитывая, что на шифровании, в некотором смысле, стоит современный мир, например финансовая система, государства, корпорации, то изобретение квантового компьютера изменит мир почти также, как изобретение вечного двигателя, ибо у человечества уже не будет основного способа скрывать информацию. Пока, что, заявления о работающей модели квантового компьютера оставим для обсуждения учеными. Очевидно, что до работающей модели еще очень далеко, так, что криптографические алгоритмы продолжат нести свою службу по защите информации во всем мире.
img
Всем привет! В сегодняшней статье расскажем об одном из самых полезных, на наш взгляд, коммерческих модулей FreePBX и продемонстрируем процесс его настройки. Особенно поможет данный модуль системным администраторам, которым часто приходится подготавливать телефонные аппараты для новых сотрудников, а также обслуживать и обновлять их. Итак, встречайте - модуль EndPoint Manager! Его стоимость на момент написания статьи 17.01.18 составляет 149$ (8 418 рубля), лицензия предоставляется на 25 лет. Согласитесь, в масштабах компании - это не такая большая сумма, а время Вашего админа – бесценно :) /p> Конечно, если Вы являетесь счастливым обладателем телефонов от Sangoma, то благами модуля EPM вы можете пользоваться бесплатно :) Обзор Модуль EndPoint Manager позволяет организовать функционал auto-provisioning, когда телефонный аппарат нужно только подключить к сети, а все необходимые настройки он автоматически скачает с сервера, после чего сразу же будет готов к работе. Помимо телефонных аппаратов, с помощью данного модуля можно также настраивать шлюзы, конференц-фоны, беспроводные трубки, дверные телефоны и пэйджинг устройства самых популярных производителей VoIP оборудования: Aastra Algo AND Audiocodes Cisco Cortelco Cyberdata Digium Grandstream HTek Mitel Mocet Obihai Panasonic Phoenix Audio Polycom Sangoma Snom Uniden Vtech Xorcom Yealink Полный список конкретных поддерживаемых устройств можно найти на сайте разработчика: https://wiki.freepbx.org/display/FPG/EPM-Supported+Device Основное предназначение EPM - это создание шаблонов (template) с необходимыми настройками, которые потом можно применять на одном или группе аналогичных устройств, что сводит подготовку устройств к минимуму. Общий механизм работы примерно такой - После создания шаблона с настройками для определённой модели телефонного аппарата, администратор, с помощью модуля EPM, привязывает данный шаблон к конкретному внутреннему номеру (extension) по MAC адресу данного устройства. После этого автоматически создаётся конфигурационный файл вида ХХХХ.cfg, где ХХХХ – MAC адрес устройства, который, сервер FreePBX с установленным EPM, хранит на файловом хранилище. Когда телефонный аппарат подключается в сеть, то вместе с IP адресом, он получает по DHCP адреса сервера (option 66), на котором для него создан файл конфигурации. После чего телефон обращается на данный сервер и скачивает готовую конфигурацию и, опционально, актуальную прошивку. То есть, по сути, для того чтобы ввести новый телефон в эксплуатацию, нам нужно только подключить его в сеть, узнать его MAC адрес и всё! Более подробно про процесс auto-provisioning и option 66 можно почитать в нашей статье Модуль имеет несколько подразделов, каждый из которых имеет своё предназначение, рассмотрим их: Global Settings - в данном разделе настраиваются общие параметры модуля, такие как внутренняя и внешняя адресация, порты, административные и пользовательские пароли для устройств Extension Mapping - данный раздел предназначен для настройки соответствия внутреннего номера, настроенного на IP-АТС и назначения определённого шаблона конфигурации. Привязка происходит по MAC адресу аппарата Brands - данный раздел содержит шаблоны конфигураций для определённого бренда и моделей VoIP оборудования. Брендов может быть несколько, они добавляются в разделе Add Brand. По умолчанию тут только шаблон для телефонов Sangoma. Add Brand - здесь Вы можете добавить новый бренд, для которого в дальнейшем будете создавать шаблоны конфигураций Image Management - данный раздел предназначен для управления фоновым изображением на телефонном аппарате, если конечно он его поддерживает Ringtone Management - данный раздел предназначен для управления рингтонами звонка на телефонном аппарате; Basefile Edit - с помощью данного раздела можно изменять дефолтные параметры самих шаблонов для любой модели телефона. Как правило, это подразумевает редактирование XML файла конфигурации. Custom Extensions - данный раздел предназначен для настройки телефонных аппаратов, которые не зарегистрированы на вашей АТС. Поскольку модуль EPM по умолчанию видит только пул внутренних номеров локальной АТС, то для настройки удалённых устройств, например с другой АТС, необходимо сначала объявить их в этом разделе. Firmware Management - данный раздел позволяет управлять прошивками устройств всех брендов. Помимо этого, можно управлять их версиями и назначать определённому шаблону ту или иную версию прошивки. Network Scan - с помощью данной утилиты можно просканировать сеть и получить список MAC адресов устройств, которым ещё не назначены шаблоны конфигураций и сразу же их назначить через раздел Extension Mapping. Стоит отметить, что поскольку MAC адреса не маршрутизируются, то определить можно только устройства, находящиеся в одной сети с IP-АТС, поэтому здесь нужно указывать локальную сеть. То есть, например, если IP адрес Вашей АТС – 192.168.11.64/24, то Вы сможете успешно просканировать только устройства в сети 192.168.11.0/24. Настройка Рассмотрим подробнее каждый из разделов, описанных выше. После установки, модуль появляется в разделе Settings. Доступ к разделам модуля осуществляется по нажатию на кнопку в правом углу: Первое, с чего необходимо начать - это глобальные настройки Global Settings. Internal IP - здесь указываем локальный адрес нашей IP- АТС. Можно ввести слово auto, тогда локальный IP адрес будет определён автоматически. External IP - в этом поле указываем внешний адрес нашей IP-АТС или валидный FQDN. Это поле нужно только если у вас есть телефоны, которые подключаются из вне. Можно ввести слово auto, тогда внешний IP адрес будет определён автоматически, чтобы не использовать данное поле – введите none Ports - данная секция отображает номера портов, которые настроены для различных сервисов - Web Server - порт для доступа к вэб-интерфейсу модуля, HTTP Provisioning - порт для auto-provisioning по протоколу HTTP, TFTP Provisioning - порт для auto-provisioning по протоколу TFTP, RESTful Apps - порт использующийся для интеграции Phone Apps с IP-АТС. Номера данных портов настраиваются в модуле System Admin, настроить через EPM их нельзя. Phone Admin Password - здесь можно административный пароль для доступа к вэб-интерфейсу телефонных аппаратов. Пароль будет одинаковым для всех устройств под управлением модуля EPM Phone User Password - некоторые телефоны имеют разные уровни доступа к вэб-интерфейсу управления. В данном поле можно настроить пароль для пользовательского уровня. ReSync Time - время, по истечению которого телефон будет заного запрашивать конфигурацию с сервера, чтобы актуализировать её. По умолчанию это день – 86400 секунд XML-API (RestAPI) Default Login - разрешает доступ к Phone Apps, если это поддерживается телефоном. Extension Mapping IP Address и Phone Status - здесь настраивается как будет отображаться статус телефонного аппарата в разделе Extension Mapping. Можно показывать IP адрес телефона и время последнего ping’а данного аппарата По завершению настроек необходимо нажать Save Global Теперь, когда у нас есть глобальные настройки, можно добавлять и настраивать шаблоны для любых брендов телефонных аппаратов, которые будут подключаться к нашей IP-АТС. Для этого открываем меню и кликаем Add Brand, перед нами откроется список поддерживаемых производителей, выберем Cisco. После этого, перед нами откроется окно с параметрами настроек нового шаблона для устройств Cisco: Внимание! Дальнейшие параметры могут отличаться в зависимости от выбранного в предыдущем шаге производителя. Ниже будет приведён пример для Cisco Template Name - имя шаблона. Рекомендуем указывать здесь модели, для которых создаётся шаблон, а также для каких телефонных аппаратов он предназначен – локальных или удаленных. Например, в нашем случае шаблон будет для локальных телефонов Cisco SPA 504G Destination Address - адрес IP-АТС, на который телефон будет обращаться для того, чтобы зарегистрироваться. Значения Internal и External берутся из Global Settings или же вы можете указать адрес вручную нажав Custom Provision Server Protocol - протокол, который будут использовать телефоны для получения своих конфигурационных файлов - TFTP или HTTP Provision Server Address адрес provisioning сервера, на который телефон будет обращаться для получения конфигурации. Значения Internal и External берутся из Global Settings или же вы можете указать адрес вручную нажав Custom. В нашем случае - Destination Address и Provision Address будут совпадать и являться адресом IP-АТС 192.168.11.64, это наиболее распространённый случай. Time Zone - временная зона Primary Time Server и Time Server 2 - сервера синхронизации времени NTP Daylight Savings - включает переход на летнее время Background Image - фоновое изображение для телефонного аппарата. Загружается в разделе Image Management Line Label - позволяет вывести идентификатор линии на LCD экран телефона (если он есть): Extension - выводит внутренний номер, например “7007” Name - выводит имя внутреннего номера, например “Alex Dobronravov” Name-Extension - выводит имя и номер, например “Alex Dobronravov 7007” Обратите внимание, что в зависимости от используемого телефона количество отображаемых символов может быть ограничено Dial Pattern - здесь можно поменять стандартные шаблоны набора номера, используемые телефоном. Символы в данном поле будут зависеть от выбранного производителя Firmware Version - здесь мы можем настроить загрузку прошивок для моделей телефонных аппаратов, для которых создаётся шаблон. При нажатии на кнопку Firmware Management мы попадаем в соответствующий раздел, в котором уже доступны все прошивки для телефонов Cisco (в том числе и для нужного нам SPA 504G), выберем самый актуальный пак. В каждом паке содержатся прошивки для разных моделей телефонов. Из пака загружаются только прошивки для моделей, которые выбраны в шаблоне. Можно указать разные версии прошивок, для этого нужно выбрать разные паки в Firmware Slot 1 и с После чего в настройках шаблона в поле Firmware Version мы можем выбрать нужный слот, чтобы загрузить его на все телефонные аппараты, которые будут выбраны в данном шаблоне. Available Phones - в данном списке находим нужную нам модель телефонного аппарата (в нашем случае – SPA 504G) и кликаем на неё. После чего перед нами открывается окно с настройками кнопок телефонного аппарата. Доступные настройки будут зависеть от выбранной модели В данном случае мы настроили на первой кнопке телефона SPA 504G отображение линии, а на второй BLF по номеру 3032. Отметим, что подобная конфигурация будет присвоена всем телефонам, которым мы назначим данный шаблон. Если их много, то некоторым, например, может не понадобиться BLF одного и того же номера, учитывайте это. В дальнейшем, настройки кнопок можно будет изменить для каждого телефона индивидуально. Отметим также, что можно создать один шаблон для нескольких моделей телефонов (а также для панелей расширения Expansion Module и других устройств, например, в случае Cisco - FXS), для этого просто отметьте и настройте необходимые модели: По завершению настройки шаблона доступно несколько опций сохранения - Save - просто сохранит новый шаблон, Save and Rebuild Config(s) - сохранит конфигурацию подготовит её к загрузке на телефоны, которые используют данный конфиг при следующем цикле синхронизации, Save, Rebuild and Update Phones - данный вариант перезапишет новую конфигурацию, подготовит её к загрузке на телефоны, которым назначен данный шаблон и отправят её на эти телефоны, что может вызвать перезагрузку телефонов. Стоит отметить, что пока никаким телефонам не назначен данный шаблон – при использовании опций Save and Rebuild Config(s) и Save, Rebuild and Update Phones ничего не произойдёт, опции действуют только когда в разделе Extension Mapping есть активные устройства. Для более тонкой настройки параметров, которые невозможно настроить стандартными средствами шаблона, используйте функционал Basefile Edit. Он предназначен для опытных пользователей и позволяет править конфигурацию шаблона для определённой модели на уровне её конфигурационного файла, как правило – формата XML Завершение настройки и назначение настроенного шаблона телефонным аппаратам Теперь, когда мы закончили с настройкой шаблона, самое время привязать его к внутреннему номеру и к конкретному телефонному аппарату. Для этого есть 2 способа: Предварительно убедитесь, что настраиваемые телефонные аппараты подключены в сеть и получают адреса по DHCP. Также, на DHCP сервере должна быть настроена опция 66 (option 66), сообщающая телефону адрес provisioning сервера, на котором хранится конфигурация. Заходим в раздел Extension Mapping и нажимаем Add Extension. Выбираем внутренний номер, из списка зарегистрированных на нашей IP-АТС, которому хотим назначить шаблон (тут также можно настроить Custom Extension, о котором говорилось выше), далее выбираем учётную запись SIP, в нашем случае - Account 1. Во втором столбце выбираем бренд - Cisco и ниже прописываем MAC адрес настраиваемого телефона. В последнем столбце выбираем шаблон, который мы только что настроили (в нашем случае spa504g_internal) и модель телефона (в нашем случае Cisco SPA 504G) После этого выбираем способ сохранения конфигурации и нажимаем Use Selected. Мы выбрали Save, Rebuild and Update Phones, чтобы конфиг сразу же отправился на телефон. Заходим в модуль Extensions ищем нужный внутренний номер и открываем вкладку Other. В разделе Endpoint заполняем необходимые поля и нажимаем Submit В обоих случаях, после данных манипуляций, создаётся конфигурационный файл XXXXYYYYZZZZ.cfg , где XXXXYYYYZZZZ – МАС адрес телефонного аппарата и хранится в файловом хранилище сервера. Когда телефон подключится в сеть, то от DHCP сервера он получит IP адрес, а также через опцию 66 – адрес provisioning сервера, в нашем случае – это TFTP сервер 192.168.11.64. Телефонный аппарат обратится на TFTP сервер и скачает от туда свой конфигурационный файл XXXXYYYYZZZZ.cfg. Таким образом, телефон будет сразу готов к работе.
img
Отчетность. Важная штука, не правда ли? Особенно в крупном контакт - центре, где контроль за SLA и работой тысяч операторов является критическим бизнес - узлом. Ранее, мы рассказывали про UCCE. Это такой большой контакт - центр от Cisco для больших компаний. А сегодня мы поговорим Cisco Unified Intelligence Center (CUIC), как его еще называют “куик". Обзор возможностей, архитектура и термины продукта в статье. Зачем нужен? CUIC позволяет работать с историческими данными и данными реального времени. “Куик" можно установить по модели standalone, когда у вас будет только 1 сервер, или кластеризовать это решение, добавив в него до 8 серверов. В CUIC можно добавлять различные отчеты, в том числе кастомизированные, править отображение отчетов, делать его в формате диаграмм, чартов, делать “пермалинки" (ссылки по web на отчет), дашборды и многие другие функции. Архитектура С точки зрения высокоуровневой архитектуры, CUIC работает вот так: Итак, с точки зрения высокоуровневой архитектуры: Пользователь (супервайзер) через браузер делает обращение в CUIC для генерации отчета; Веб запрос обрабатывается web - сервером в кластере серверов Unified Intelligence Center; Данные “парсятся" черед Data source (датасорс, источник данных); Датасорс предоставляет отчеты реального времени или исторические с UCCE или CVP сервера отчетности; Кстати, подключить CUIC можно и к данным UCCX При подключении к UCCE (в CUIC есть отдельный пункт настройки Data Sources), мы указываем подключение серверу AWDB (Administrative Workstation DB). По факту, это просто SQL - плечо по 1433 порту (если не меняли). Как мы сказали ранее, по факту, CUIC - визуализатор данных из БД источников. Предварительная настройка его в этом и заключается - настроить источники данных (data sources). Разобрались с архитектурой. Теперь давайте посмотрим, как выглядит CUIC. Как выглядит CUIC? Давайте быстро пробежимся по UI интеледженс центра. Форма авторизации весьма стандартная: Чуть раньше в статье мы говорили про создание Data Source для CUIC - источников данных. Вот как этот конфигуратор выглядит в реальности: Тут совершенно ничего сложного. Просто плечо в БД. Теперь про отчеты. Вот так выглядит дашборд в системе. Обратите внимание, на нем преднастроены отчеты, стикеры (позволяющие запинить важные данные, например), фреймы на нужные веб - ресурсы: CUIC начиная с 12 версии В 12 версии Cisco прокачала свои интерфейсы в контакт - центровых продуктах (ну или купила компанию, которая это делает, сами понимаете). Изменения в плоскости интерфейса коснулись так же и агентского рабочего места Finesse. Посмотрите еще раз на скриншот выше. А теперь посмотреть, как изменился UI интерфейс CUIC:
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59