По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Многомерные системы управления данными (МСУБД) объединяют несколько систем баз данных в одну. Вместо работы с несколькими моделями и поиска возможностей для их объединения, МСУБД предлагает общий механизм для различных типов данных. В данной статье приводится подробный обзор многомерных баз данных. Что такое многомерные базы данных? Многомерная база данных (Multi-Model Database) – это система управления, которая сочетает несколько типов БД в одну серверную систему. Большинство СУБД поддерживает одну модель БД, а в МСУБД можно хранить, запрашивать и индексировать данные из нескольких моделей. Важное преимущество многомерных БД заключается в многоязычной сохранности, когда не нужно искать способы для объединения различных моделей. Гибкий подход позволяет хранить данные разными способами. В результате вы получаете: Гибкое и динамичное программирование Снижение избыточности данных Например, изучать взаимосвязи между точками данных или создавать систему рекомендаций гораздо проще с помощью графовых БД, а реляционные БД лучше подходят для определения связи между столбцами данных. Ключевая функция МСУБД заключается в ее способности преобразовывать данные из одного формата в другой. К примеру, данные в формате JSON быстро преобразуются в XML. Преобразование форматов данных обеспечивает дополнительную гибкость и упрощает соответствие определенным требованиям проекта. Примеры использования МСУБД Варианты использования СУБД позволяют лучше понять принципы работы данной модели. Анализируя практические примеры, вам становится ясно, как несколько моделей работают в единой системе. Хранение и управление несколькими источниками данных Классическая IT-система использует различные источники данных. Информация не всегда хранится в том же формате или в той же базе данных. Несколько форматов складываются в сложную систему – трудную для поддержания и поиска данных. Хранение данных в МСУБД облегчает администрирование систем. Все находится в одной базе, поэтому на хранение и управление данными из разных источников тратится меньше времени. Расширение возможностей модели Многомерные базы данных предлагают расширения для моделей. Особенности одних моделей перекрывают недочеты других. Например, очень просто запрашивать данные в JSON-формате через SQL-запросы. Нет необходимости корректировать исходный источник данных. Расширяемость сокращает время обработки данных и устраняет необходимость в ETL-системах (извлечение, преобразование, загрузка). Гибридные среды данных Классическая среда данных разграничивает операционные данные от аналитических. Данные для анализа необходимо преобразовать и хранить отдельно от операционных. Происходит задвоение, и качество данных снижается. Разделенное пространство повышает затраты на техническое обслуживание. Всем базам данных необходимо администрирование и управление резервным копированием. Многомерная БД использует гибридный подход к хранению данных. Унифицированные узлы, в которых хранятся транзакционные данные и из которых извлекаются аналитические, намного проще поддерживать. Централизация данных У данных в организации есть определенные ограничения. Такие ограничения нужны, но они усложняют работу с информацией внутри компании. Многомерные БД хранят данные в формате as-is («как есть»), поэтому никакие преобразования не нужны. Централизация данных дает ценную информацию о существующих данных и предлагает возможности для создания новых вариантов использования. Поиск больших данных Hadoop отлично справляется с обработкой больших объемов данных в разных моделях. Основная причина – скорость получения, обработки и хранения данных. Единственное, чего не хватает Hadoop, – это эффективного механизма поиска. Если взять вычислительные мощности Hadoop и объединить их с возможностями поиска по многомерной БД, то получится функциональная система. Процесс работы становится масштабируемым и удобным для выполнения задач над большими данными. Плюсы и минусы многомерной базы данных В многомерных базах данных есть свои плюсы и минусы. В таблице ниже перечислены ключевые пункты: Плюсы Минусы Постоянство данных Сложность Динамичность Все еще в стадии разработки ACID-совместимость Не хватает методов моделирования Подходят для сложных проектов Не подходят для простых проектов Такая модель подходит для корпоративных настроек с множеством данных. Разные секторы пользуются данными для разных задач. Но детализированной и уже настроенной структуре многоязычной сохранности может не хватать возможностей многомерной системы. Плюсы Преимущества многомерных баз данных: согласованность данных между моделями за счет единой серверной системы динамичная среда с использованием различных типов данных на одной платформе отказоустойчивость, из-за ACID-совместимости подходят для сложных проектов с множественным представлением данных Минусы Недочеты многомерных баз данных: сложность МСУБД, из-за чего с ними трудно работать модель БД все еще развивается и не имеет окончательной формы ограниченная доступность различных методов моделирования не подходит для более простых проектов или систем Какие многомерные базы данных считаются самыми лучшими? На рынке представлено огромное множество многомерных типов БД. Их самой примечательной особенностью является поддержка нескольких моделей на одном сервере. Некоторые БД накладывают несколько моделей на сервер через компоненты. Но такие типы БД не считаются подлинными многомерными базами. Еще одно важное отличие – доступные методы моделирования. Этот аспект крайне важен для того, чтобы получать максимальную пользу от доступных данных. MarkLogic Server MarkLogic Server – это многомерная нереляционная база данных. Она появилась как хранилище XLM, а затем была доработана для хранения различных моделей: документной графовой текстовой пространственной типа «ключ – значение» реляционной Это универсальная, эффективная и безопасная база данных. Возможности сервера MarkLogic: Безопасность и управление. Интегрированное управление безопасностью данных и пользователей. ACID-совместимость. Обеспечивает строгую согласованность данных. Расширенный поиск. Доступ к данным обеспечивает встроенная поисковая система с семантическим поиском. Разноплановая аналитика. Вам доступны настраиваемые инструменты для аналитики и бизнес-аналитики. Встроенное машинное обучение. Интеллектуальное автоматизированное курирование данных с помощью встроенных алгоритмов машинного обучения обеспечивает более быстрый доступ к данным. Отказоустойчивость. Mark Logic предлагает высокую доступность и систему аварийного восстановления, помогающую избегать любого рода сбоев. Поддержка гибридного облака. База данных позволяет самостоятельно управлять развертыванием с помощью гибридных облачных решений. ArangoDB ArangoDB – это нативная многомерная система управления базами данных. Она поддерживает следующие форматы данных: документные графовые «ключ-значение» База данных извлекает и изменяет данные с помощью унифицированного языка запросов AQL. К другим важным особенностям относятся: Расширенные соединения. Позволяет соединять данные с помощью гибких запросов, что снижает их избыточность. Транзакции. Выполнение запросов к нескольким документам с доступной изоляцией и согласованностью транзакций. Сегментирование. Синхронная репликация путем сегментирования позволяет снижать внутреннюю кластерную связь, повышая при этом производительность и скорость соединения. Репликация. Репликация обеспечивает распределенную БД в пределах одного центра обработки данных. Многопоточность. Благодаря многопоточности, БД может использовать несколько ядер. OrientDB OrientDB – это многомерная нереляционная база данных с открытым кодом, написанная на Java. Эта БД поддерживает следующие модели: документную графовую тип «ключ-значение» объектную пространственную OrientDB первая ввела несколько моделей на уровне ядра. Эта база данных поставляется с рядом уникальных функций, к которым относятся: Поддержка SQL. БД поддерживает SQL-запросы, благодаря чему программистам легче переключиться с реляционных моделей на OrientDB. ACID-совместимость. База данных полностью транзакционна; таким способом достигается ее надежность. Распределенная. Полная поддержка репликации с множеством master на разных выделенных серверах. Портативная. Позволяет быстро импортировать реляционные базы данных. Заключение Существует великое множество методов моделирования баз данных, и в каждом решении можно найти свои плюсы и минусы. Многомерные БД стремятся объединить различные базы данных в единую серверную систему, благодаря чему при разрастании системы ее сложность и потребление ресурсов не увеличиваются.
img
Новый менеджер пакетов Windows от Microsoft упрощает установку приложений, позволяя это делать одной командой. В этой статье рассказываем про Windows Package Manager и новую команду winget. Что такое менеджер пакетов Windows? Менеджеры пакетов распространены в Linux. Вместо того, чтобы искать приложение в Интернете, загрузить установщик и запускать мастер установки, вы можете просто запустить быструю команду для поиска и установки приложения по его имени. Например, чтобы установить Microsoft PowerToys, вы можете открыть окно терминала и ввести winget install powertoys. Команда автоматически найдет, загрузит и установит программное обеспечение без каких-либо дополнительных действий с вашей стороны. Это так просто. Под капотом Microsoft размещает собственный репозиторий программного обеспечения, а другие организации и частные лица могут размещать свои собственные репозитории. Это важная функция, которая повышает производительность в Linux, особенно для разработчиков и системных администраторов. Менеджер пакетов Windows - это проект с открытым исходным кодом, доступный и на GitHub. Как установить менеджер пакетов Windows Начиная с 19 мая 2020 года менеджер пакетов Windows доступен в форме предварительного просмотра. Позднее он будет интегрирован непосредственно в обновление для Windows 10. Сейчас есть несколько способов получить его: Установите инсайдерскую сборку Windows 10, зарегистрируйтесь в программе инсайдеров Windows Package Manager и установите обновление для пакета установщика приложений из Магазина Microsoft. Вы получите автоматические обновления диспетчера пакетов Windows по мере их выпуска, но вам придется запустить нестабильную версию Windows 10. Загрузите менеджер пакетов Windows .appxbundle с GitHub. Установите его, дважды щелкнув файл и нажав Update. Вы должны будете установить будущие обновления вручную с этой же страницы загрузки, но вам не придется запускать нестабильную версию Windows 10. В будущем в этом нет необходимости, и winget будет встроен во все стабильные версии Windows 10. По состоянию на май 2020 года он находится в форме предварительного просмотра, так как Microsoft тестирует его и устраняет ошибки. Как использовать winget, менеджер пакетов Windows Вы можете запустить winget из Windows PowerShell или из классической командной строки. Мы рекомендуем установить новый терминал Windows, если вы этого еще не сделали. Вы можете скачать Windows Terminal из Магазина Microsoft. Вы даже можете получить исходный код на GitHub. Да, новый терминал Windows с открытым исходным кодом. Из командной строки выполните команду winget, чтобы просмотреть дополнительную информацию об использовании инструмента. Чтобы найти приложение, выполните следующую команду, заменив name поисковой фразой: winget search name Чтобы установить приложение, выполните следующую команду, заменив name на имя приложения: winget install name Для просмотра дополнительной информации о приложении выполните следующую команду, заменив name именем приложения или поисковой фразой: winget show name Чтобы просмотреть полный список доступных приложений, выполните следующую команду: winget install В своем первоначальном выпуске репозитории winget уже заполнены широким спектром популярных настольных приложений. Вы найдете все, от обычных приложений для настольных систем Windows до инструментов для разработчиков. Список включает в себя Google Chrome, Mozilla Firefox, Zoom, Steam, медиаплеер VLC, Spotify, терминал Windows, код Visual Studio, Ruby, Microsoft PowerToys и многие другие. Чтобы управлять источниками, запустите winget source. Вы увидите список команд. Например, чтобы просмотреть текущие источники, запустите: winget source list В первоначальной версии winget есть только встроенный исходный код winget, управляемый Microsoft, расположенный по адресу https://winget.azureedge.net/cache. В будущем вы сможете добавлять сторонние источники с помощью дополнения winget source. Вы можете увидеть больше информации о том, как использовать одну из встроенных команд winget, добавив -? к нему. Например, чтобы увидеть различные опции, которые вы можете использовать с winget, выполните следующую команду: winget search -? Заключение Теперь вы знаете как работать с менеджером пакетов winget. Microsoft наверняка добавит дополнительные функции в диспетчер пакетов Windows в будущем, и он станет только более мощным. А другие статьи про Windows можно прочитать в нашем разделе.
img
Edge computing (дословно можно перевести как "граничные вычисления") - это сетевая философия, основанная на том, что вычисления должны совершаться как можно ближе к источнику сырых данных. Цель сего действа в сильном сокращении задержек и ширины канала связи. Если говорить проще, то edge computing - это когда меньше всякой всячины вычисляется к облаке или ЦОДе, и больше вычисляется непосредственно на месте - то есть на локальном ПК, IoT устройстве или на граничном сервере. Таким образом сокращается необходимость поддерживать в требуемом состоянии дорогостоящие каналы связи (представьте себе, что для вычислений отправляете очень объемную информацию - к примеру, видео высокой четкости) Что такое граница сети? Для устройств, подключенных к сети Интернет, границей будет точка, где это устройства непосредственно подключается к Интернету. Конечно, определение экстремально размытое; к примеру, компьютер пользователя или процессор внутри IoT камеры могут быть теми самыми точками, однако, сетевой маршрутизатор также вполне попадает под это определение. Но важно одно: граница будет гораздо ближе к устройству (с географической точки зрения), нежели к облачным серверам. Приведем пример edge computing-а Представим себе некое здание, в котором понаставили десятки IoT камер очень высокого разрешения. Эти камеры относительно безмозглые, т.к они просто отдают сырой видеосигнал на облако. Облако, в свою очередь, пропускает весь этот сырой видео трафик через приложение, которое умеет определять движение, чтобы хранить только максимально полезную информацию. Представьте себе требованию к Интернет-каналу в таком случае: ежесекундно передаются мегабайты информации, и к тому же получается высокая нагрузка на облачные сервера, которые занимаются вычислениями - они обязаны обрабатывать все эти огромные объемы информации. А теперь представьте себе, что сервер, определяющий движение был помещен на границу сети (той самой, в которой находится наше воображаемое здание). Что если каждая камера будет использовать свои собственные вычислительные мощности для запуска там приложения, которое будет определять движение? Очевидно, тогда в облако будет уходить только "полезный" трафик. Кроме того, на облачные сервера ляжет только задача по хранению важной информации, что де-факто означает возможность этого облака поддерживать связь с гораздо большим количеством камер без перегрузки. Вот примерно так и выглядит пример edge computing. Преимущества концепции edge computing Как видно в примере выше, данный концепт позволяет минимизировать загрузку Интернет-канала и нагрузку на вычислительные мощности облака. Полоса пропускания и вычислительные мощности, к сожалению, конечны и стоят реальных денег. С каждым зданием и офисом, которые будут оборудованы "умными" камерами, принтерами, термостатами и даже тостерами, аналитики предсказывают, что к 2025 году в мире будет установлено 75 миллиардов IoT устройств. Чтобы все эти устройства корректно работали, большой процент вычислений должен быть перенесен на edge-и. Следующее преимущество - это снижение задержки. Каждый раз, когда устройство пытается подключиться к какому-нибудь удаленному серверу, появляется задержка. Гипертрофированный пример: когда двое коллег в одном офисе чатятся в аське, они могут почувствовать сильную задержку, так как каждое сообщение "улетает" во внешний мир, подключается к некому очень удаленному серверу и также возвращается обратно в эту сеть. Если бы весь этот процесс происходил на границе сети, то эта задержка могла бы быть значительно снижена. Также, когда пользователи используют тонны веб-приложений, которые постоянно подключаются к внешним серверам, они могут чувствовать эти самые задержки. Длительность задержек будет зависеть от того, какова их полоса пропускания и где находятся сервера, но этих задержек можно легко избежать. Правильно, если воткнуть все эти сервера на границу этой сети. Если подытожить, то общие плюсы этого концепта таковы: Снижение задержек Снижение затрат путем использования более дешевых каналов связи Снижение затрат путем уменьшения нагрузки на удаленные вычислительные ресурсы Минусы данного подхода На мой взгляд, есть два основных минуса: первый - это сильное увеличение сложности устройств и повышенный риск компрометации этих устройств - по сути, даже банальный термостат становится полноценным компьютером, который, как мы все знаем, может быть легко подвергнут взлому. Кроме того, из-за увеличения сложности устройств и повышения их вычислительной мощности серьезно возрастает их стоимость. Однако очевидно, что технологии шагают семимильными шагами - компьютер 30 лет назад был в тысячи раз слабее современного смартфона, а стоили они гораздо дороже.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59