По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
CORS – это механизм браузера, который позволяет серверам указывать сторонние источники, которые имеют право запрашивать у них ресурсы. Этот механизм обеспечивает безопасность и не дает вредоносным сайтам красть данные, которые принадлежат другим источникам. CORS расшифровывается как Cross-Origin Resource Sharing, что переводится как «обмен ресурсами с запросом происхождения». В случае, когда для загрузки ресурса используется CORS, браузер отправляет предварительный HTTP-запрос  OPTIONS . Сервер должен ответить, указав все источники, с которыми он собирается взаимодействовать. Также он может определить дополнительные ограничения, например, указать HTTP-заголовки, которые могут быть отправлены.  Браузер проверяет текущий источник и исходящий запрос на соответствие спецификациям сервера. Если все проверки были пройдены успешно, то запрос одобряется. В противном случае запрос будет отклонен. Если это произойдет, вы увидите предупреждение в консоли.  Когда используется CORS Браузеры применяют CORS для запросов Ajax и Fetch. Этот механизм также используется для веб-шрифтов, текстур WebGL и отрисовки изображения холста с помощью  drawImage() . CORS также потребуется для любого правомерного запроса к стороннему источнику. CORS не применяется в том случае, если запрос рассматривается как «простой». Простой запрос должен начинаться с  GET ,  HEAD или  POST и иметь тип содержимого  text/plain ,  application/x-www-form-urlencoded или  multipart/form-data . Единственные заголовки простых запросов, которые допускаются, - это  Accept ,  Accept-Language ,  Content-Language и  Content-Type . Если запрос не соответствует всем критериям, которые мы перечислили выше, то современные браузеры запускают CORS. Важно понимать, что CORS – это технология для браузера, и вы не сможете использовать его при самостоятельной отправке запросов, например, с помощью утилиты  curl в своем терминале.  CORS не всегда отправляет предварительный запрос  OPTIONS . Предварительная проверка нужна и используется только тогда, когда запрос может вызвать «побочные эффекты» на сервере. Как правило, это относится ко всем методам запроса, кроме  GET .  Предположим, что есть запрос  POST к /api/users/create . Сервер всегда будет создавать нового пользователя, но при этом браузер может отказать в доступе к ответу на этот запрос, если для запроса был использован CORS. Есть шанс, что сервер может отклонить реальный запрос, если перед этим был отправлен запрос  OPTIONS . Это обеспечивает то, что учетная запись пользователя на самом деле не будет создаваться.  Управление CORS на стороне клиента Несмотря на то, что CORS является технологией для браузера, вы все равно не можете влиять на нее напрямую с помощью клиентского кода. Это гарантирует, что вредоносные скрипты не смогут обойти защиту CORS, чтобы загрузить данные со сторонних доменов.  CORS, как правило, незаметен, поэтому вы даже не будете знать о том, что он работает. Если в процессе CORS произойдет сбой, то ваш код JavaScript увидит обычную сетевую ошибку. Получить точную информацию о том, что пошло не так, невозможно, поскольку это может представлять риск нарушения безопасности. Все подробности записываются в консоль.  Единственный способ устранить сбои CORS – это убедиться, что ваш сервер отправляет корректные заголовки ответов. Теперь давайте посмотрим, как это делается.  Управление CORS на стороне сервера Для начала вам следует убедиться в том, что ваш сервер правильно обрабатывает запросы  OPTIONS . Возможно, вам придется создать новый маршрут обработки запросов в вашей веб-среде. В большинстве случаев вам придется принимать запросы  OPTIONS к каждой конечной точке, которая может получить CORS-запрос от браузера. Ответ не обязательно должен иметь тело, но он должен включать в себя определенные заголовки, которые сообщают браузеру, что делать дальше.  Начните с заголовка  Access-Control-Allow-Origin . Он укажет на сторонний источник, который имеет право взаимодействовать с вашей конечной точкой. Указать можно только один источник; но вы можете обрабатывать несколько источников, динамически устанавливая в качестве значения заголовка источник, из которого был отправлен запрос. Текущий источник можно найти в заголовке запроса  Origin . Access-Control-Allow-Origin принимает * в качестве специального подстановочного символа. Это позволит принимать запросы CORS из всех источников. Здесь следует быть осторожным, поскольку указание разрешенных источников обеспечивает контроль и не дает вредоносным скриптам запрашивать данные с вашего сервера.  Access-Control-Allow-Origin должен быть включен в ответ вашего сервера на реальный запрос и в ответ на запрос  OPTIONS . После того, как этот заголовок будет настроен, будет разрешен базовый обмен данными со сторонним клиентом браузера.  Указание CORS-заголовков  CORS-запросы, как правило, поддерживают только заголовки «простых» запросов, которые были перечислены выше. Если вы хотите использовать какой-то другой заголовок, например,  Authorization или настраиваемый заголовок, то вашему серверу необходимо будет явно разрешить его в ответе на предварительный запрос.  Установите заголовок  Access-Control-Allow-Headers . Его значение – это список названий заголовков через запятую, которые будут приняты с реальным запросом.  Access-Control-Allow-Headers: Authorization, X-Custom-Header Теперь браузер разрешит запросы с заголовками  Authorization или  X-Custom-Header . Браузер отправляет заголовок  Access-Control-Allow-Headers вместе с предварительным CORS-запросом. Он содержит список заголовков, которые будут отправлены с реальным запросом. Ваш серверный код может использовать эту информацию для того, чтобы понять, как нужно ответить на предварительный запрос.  Ограничение на определенные методы запроса Аналогично тому, как мы указываем заголовки запроса, так и конечные точки сервера могут определять, какие HTTP-методы из различных источников будут разрешены. Установите заголовок  Access-Control-Allow-Methods . Его значение – список названий методов через запятую.  Access-Control-Allow-Methods: GET, POST, DELETE Браузер отправляет заголовок  Access-Control-Request-Method с предварительным запросом. Таким образом сервер узнает HTTP-метод, который будет использоваться для выполнения окончательного запроса.  Cookie-файлы и учетные данные CORS-запросы, как правило, не отправляют cookie-файлы, так как в них может содержаться конфиденциальные учетные данные, которые идентифицируют отправителя. Если вам необходимо добавить cookie-файл к запросу на другой источник, то это нужно явно разрешить в клиентском коде: fetch("https://localhost/demo", {    mode: "cors",    credentials: "include" }); К тому же сервер должен установить заголовок ответа  Access-Control-Allow-Credentials: true , чтобы сообщить о том, что он соглашается на обмен cookie-файлами, которые содержат учетные данные.  Если вы используете заголовок  Access-Control-Allow-Credentials , то нельзя использовать подстановочный символ (*) в заголовке  Access-Control-Allow-Origin . Сервер должен явно указать источник для того, чтобы обезопасить конфиденциальность пользователя. Если вы будете использовать подстановочный символ, то браузер не выполнит запрос и вернет ошибку.  Предварительное кэширование Предварительные запросы  OPTIONS усиливают нагрузку на каждый запрос, который вы отправляете. При хорошем соединении задержка должна быть почти незаметной, и все же нерационально вызывать одну и ту же конечную точку раз за разом.  Вы можете указать браузеру кэшировать ответы на предварительные запросы. Для этого вам нужно установить заголовок  Access-Control-Max-Age . Значение этого заголовка – это время, выраженное в секундах. В течение этого времени браузер может хранить кэшированный ответ. Последующие запросы к той же конечной точке в течении заданного периода времени не будут сопровождаться предварительными запросами.  Заключение При первом знакомстве с технологией CORS она может сбивать с толку. Эта технология браузера, которая контролируется ответами сервера. Использование CORS неизбежно, но при этом оно может оказаться неуправляемым, если у вас нет доступа к серверному коду, с которым вы взаимодействуете.  Фактическая реализация CORS довольно проста. Убедитесь, что ваш API или CDN отправляет корректные заголовки ответов, в особенности это касается заголовка  Access-Control-Allow-Origin . Если с этим проблем нет, то у вас будет безопасная связь между источниками, которая поможет избежать вмешательства злоумышленников. 
img
Первая часть тут. Вектор пути основан на хранении списка узлов, через которые проходит путь. Любой узел, который получает обновление с самим собой в пути, просто отбрасывает обновление, поскольку это не жизнеспособный путь. Рисунок 12 используется в качестве примера. На рисунке 12 каждое устройство объявляет информацию о местах назначения каждому соседнему устройству; для пункта назначения, прикрепленного к E: E будет анонсировать F с самим собой в источнике, поэтому с путем [E], как B, так и D. От B: B анонсирует F к A с путем [E, B]. Из D: D анонсирует F в C с путем [E, D]. От C: C анонсирует F к A с путем [E, D, C] Какой путь предпочтет A? В системе вектора пути может быть ряд метрик, включая длину пути, предпочтения политики и т. д. Например, предположим, что есть метрика, которая устанавливается локально на каждом узле, переносимом с каждым маршрутом. Эта локальная метрика переносится между узлами, но никак не суммируется при прохождении через сеть, и каждый узел может устанавливать эту метрику независимо от других узлов (при условии, что узел использует одну и ту же метрику по отношению к каждому соседу). Например, локальная метрика E объявляется B, который затем устанавливает свою собственную локальную метрику для этого пункта назначения и объявляет результирующий маршрут A и т. д. Чтобы определить лучший путь, каждый узел может затем Отбросить любое место назначения с идентификатором локального узла в пути. Сравнить метрику, выбрав наивысшую локальную метрику из полученных. Сравнить длину пути, выбрав самый короткий из полученных. Объявить только тот путь, который используется для пересылки трафика. Примечание.Не имеет значения, выбирает ли каждый узел самую высокую или самую низкую метрику. Важно только то, что каждый узел выполняет одно и то же действие во всей сети. Однако при сравнении путей узел всегда должен выбирать более короткий путь. Если каждый узел в сети всегда будет следовать этим трем правилам, то петля не образуется. Например: E объявляет F в B с путем [E] и метрикой 100. B объявляет F к A с путем [E, B] и метрикой 100. E объявляет F в D с путем [E] и метрикой 100. D объявляет F в C с путем [E, D] и метрикой 100. C объявляет F в A с путем [E, D, C] и метрикой 100. У A есть два пути, оба с одинаковой метрикой, и, следовательно, будет использовано второе правило, чтобы выбрать один путь, который является наиболее коротким. В этом случае A выберет путь через [E, B]. A будет объявлять маршрут, который он использует, к C, но если C следует тому же набору правил, у него также будет два пути с доступной метрикой 100, один с путем [E, B, A], а второй с путем [E, D, C]. В этом случае должен быть механизм разрешения конфликтов, который C использует внутри для выбора между двумя маршрутами. Неважно, что это за механизм разрешения конфликтов, если он постоянно применяется в узле. Независимо от того, какой путь выберет C, трафик к F не будет закольцован. Предположим, однако, несколько иное стечение обстоятельств: E объявляет F в B с путем [E] и метрикой 100. B объявляет F к A с путем [E, B] и метрикой 100. E объявляет F в D с путем [E] и метрикой 50. D объявляет F в C с путем [E, D] и метрикой 50. C объявляет F в A с путем [E, D, C] и метрикой 50. У A есть два пути: один с метрикой 100, а другой с метрикой 50. Следовательно: A выберет более высокую из двух метрик, путь через [E, B], и объявит этот маршрут C C выберет более высокую из двух метрик, путь через [E, B, A], и объявит этот маршрут D. D выберет более высокий из двух метрик, путь через [E, B, A, C], и объявит этот маршрут E. E отбросит этот маршрут, поскольку E уже находится на пути. Следовательно, даже если метрика перекрывает длину пути в (почти) каждом узле, цикл не образуется. Проблемы метрик Каждый алгоритм, обсуждавшийся до этого момента, использовал одну метрику для вычисления путей без петель, за исключением вектора пути, а вектор пути использует две метрики очень ограниченным образом, причем одна всегда предпочтительнее другой. Путь, по сути, можно рассматривать как «фактор разрешения конфликтов», который вступает в игру только тогда, когда основная метрика, которая никак не связана с путем (поскольку она не суммируется шаг за шагом в сети), не соответствует предотвратить петлю. Некоторые протоколы могут использовать несколько метрик, но они всегда будут каким-то образом комбинировать эти метрики, поэтому для поиска путей без петель используется только одна комбинированная метрика. Почему? С математической точки зрения, все методы, используемые для нахождения набора свободных от петель (или кратчайших) путей через сеть, разрешимы за полиномиальное или неэкспоненциальное время - или, скорее, они считаются проблемами класса P. Существует более широкий класс задач, содержащих P, который содержит любую задачу, решаемую с помощью (теоретической) недетерминированной машины Тьюринга. Среди NP-проблем есть набор задач, которые считаются NP-полными, что означает, что не существует известного эффективного способа решения проблемы. Другими словами, для решения проблемы необходимо перечислить все возможные комбинации и выбрать из этого набора наилучшее возможное решение. Проблема с множественными метриками классифицируется как NP-complete, и, следовательно, хотя и разрешима, она никоим образом не решаема, что позволяет использовать ее в коммуникационных сетях, близких к реальному времени. Алгоритмы непересекающихся путей Рассмотрим ситуацию медицинской операции, выполняемой роботом, который следует за руками живого хирурга на другом конце света. Возможно, что для того, чтобы такая система работала, требуется, чтобы пакеты доставлялись от датчиков на руках хирурга к роботу в реальном времени, по порядку, с минимальным значением параметра jitter или без него, и никакие пакеты нельзя отбрасывать. Это один из примеров. Конечно, он может быть расширен для других различных ситуаций, включая финансовые системы и другие механические системы управления, где требуется доставка пакетов в реальном времени без сбоев. В таких ситуациях часто требуется передать две копии каждого пакета, а затем позволить получателю выбрать пакет, наилучшим образом соответствующий характеристикам качества обслуживания (QoS) и потерям пакетов, необходимым для поддержки приложения. Однако все системы, рассмотренные до сих пор, могут найти только один путь без циклов и потенциально альтернативный путь (LFA и / или rLFA). Таким образом, с помощью алгоритмов непересекающихся путей решается следующая проблема: Как можно построить пути в сети таким образом, чтобы они использовали наименьшее количество перекрывающихся ресурсов (устройств и каналов), насколько это возможно (следовательно, максимально непересекающиеся или максимально избыточные)? В этой части лекций мы начнем с описания концепции двухсвязной сети, а затем рассмотрим два разных (но, казалось бы, связанных) способа вычисления непересекающихся топологий в двухсвязных сетях. Двухсвязные сети Двусвязная сеть - это любая сеть, в которой есть как минимум два пути между источником и местом назначения, которые не используют одни и те же устройства (узлы) или каналы (ребра). Обратите внимание на: Сеть является двусвязной по отношению к определенному набору источников и пунктов назначения; большинство сетей не имеют двух соединений для каждого источника и каждого пункта назначения. Небольшие блоки любой данной сети могут быть подключены двумя соединениями для некоторых источников и пунктов назначения, и эти блоки могут быть соединены между собой узкими одно- или двумя соединенными точками подключения. Часто проще всего понять двусвязность на реальном примере. На рисунке 13 показана сеть, с выделенными блоками. В блоке A есть как минимум два разных непересекающихся пути между X и F: [X, A, B, E, F] и [X, C, F] [X, A, B, F] и [X, C, F] В блоке B есть одна пара непересекающихся путей из G в L: [G, K, L] и [G, H, L]. Непересекающихся путей к Z нет, так как этот узел односвязен. Между F и G также нет непересекающихся путей, так как они односвязны. Канал [F, G] можно рассматривать как узкую точку между этими двумя блоками топологии. В сети, показанной на рисунке 13, невозможно вычислить два непересекающихся пути между X и Z. Алгоритм непересекающегося пути Суурбалле В 1974 году Дж. Суурбалле опубликовал статью, описывающую, как использовать несколько запусков SPF-алгоритма Дейкстры для поиска нескольких непересекающихся топологий в сети. Алгоритм по существу вычисляет SPF один раз, удаляет подмножество линий, используемых в SPT, а затем вычисляет второй SPF по оставшимся линиям. Алгоритм Суурбалле труднее объяснить, чем проиллюстрировать на примере, поскольку он опирается на направленный характер связей, вычисляемых с помощью SPT. В качестве примеров используются рисунки 14-18. На рисунке 14 показано состояние операций после завершения первого запуска SPF и вычисления начального SPT. Обратите внимание на стрелки направления на линиях. Не принято думать, что SPT является направленным, но на самом деле это так, когда каждая линия ориентирована в сторону от источника или корня дерева. Когда F вычисляет дерево обратно к X, оно также создает направленное дерево со стрелками, указывающими в противоположном направлении. Ребра (или связи) на SPT называются ребрами дерева, а ребра (или связи), не входящие в результирующий SPT, называются ребрами не деревьев. На рис. 14 края дерева отмечены сплошным черным цветом со стрелками направления, а ребра не деревьев - более светлыми серыми пунктирными линиями. Второй шаг показан на рисунке 15. На рисунке 15 показано каждое звено с измененными затратами; каждая линия, которая была частью исходного SPT (каждое ребро дерева, показано сплошной линией), имеет две стоимости, по одной в каждом направлении, в то время как линии, которые изначально не были частью SPT (ребра, не входящие в состав дерева, показаны пунктирными линиями), имеют свои исходные расходы. Обратите внимание на стрелки, показывающие направление стоимости в каждом случае; это будет важно на следующем этапе расчета. Для расчета стоимости двух направленных линий для каждого ребра дерева: Именуем один конец линии символом u, а другой конец линии символом v. Обратите внимание, что уравнение выполняется в обоих направлениях. Вычтем стоимость источника до v из стоимости линии от u до v. Добавим стоимость из источника к u. Если источник s: d[sp](u,v) = d(u,v) ? d(s,v) + d(s,u) По сути, это устанавливает стоимость ребер дерева равной 0, как можно увидеть, выполнив математические вычисления для ссылки [B, E]: B - есть u, E - есть v, A - есть s d(u,v) = 2, d(s,v) = 3, d(s,u) = 1 2 ? 3 + 1 = 0 Однако для всех ребер, не входящих в дерево, будет установлена некоторая (обычно большая) ненулевая стоимость. Для сети на рисунке 15: Для линии [B, A] (примечание [A, B] не является линией в вычисляемом дереве направлений): B - есть u, A - есть v, A - есть s d(u,v) = 0, d(s,v) = 0, d(s,u) = 1 0 ? 0 + 1 = 1 Для линии [E,B]: E – есть u, B – есть v, A - есть s d(u,v) = 2, d(s,v) = 1, d(s,u) = 3 2 ? 1 + 3 = 4 Для линии [C,A]: C – есть u, A – есть v, A – есть s d(u,v) = 2, d(s,v) = 0, d(s,u) = 2 2 ? 0 + 2 = 4 Для линии [F,D]: F – есть u, D – есть v, A – есть s d(u,v) = 1, d(s,v) = 4, d(s,u) = 5 1 ? 4 + 5 = 2 Для линии [D,B]: D – есть u, B – есть v, A – есть s d(u,v) = 1, d(s,v) = 1, d(s,u) = 2 1 ? 1 + 2 = 2 Следующий шаг, показанный на рисунке 16, состоит в том, чтобы удалить все направленные ребра, указывающие на источник, который лежит вдоль исходного SPT к определенному месту назначения (в данном случае Z), изменить направление ребер с нулевой стоимостью (линий) вдоль этого же пути, а затем снова запустить SPF Дейкстры, создав второй SPT на той же топологии. Возвращаясь к исходному SPT, путь от X до Z проходил по пути [A,B,D,F]. Таким образом, четыре ненулевых ребра (пунктирные линии), указывающие назад к источнику, А, вдоль этого пути были удалены. Вдоль того же пути [A, B,D,F] направление каждого ребра было изменено. Например, [A,B] первоначально указывало от A к B, а теперь указывает от B к A. Следующий шаг-запустить SPF по этому графику, помня, что трафик не может течь против направления линии. Полученное дерево показано на рисунке 17. На рисунке 17 показано исходное дерево и вновь вычисленное дерево, наложенные на исходную топологию в виде двух различных пунктирных линий. Эти две топологии все еще имеют общую связь [B,D], так что они еще не совсем разобщены. В этой точке есть два кратчайших пути от X до Z: [A,B,D,F] [A,C,D,B,E,F] Эти два графа объединяются, образуя набор ребер, и любые связи, которые включены в оба графа, но в противоположных направлениях, отбрасываются; комбинированный набор выглядит так: [A->B, B->E, E->F, A->C, C->D, D->F] Обратите внимание на направленность каждой линии связи еще раз - очень важно отсечь перекрывающуюся линию, которая будет указана как [B-> D] и [D-> B]. С помощью этого подмножества возможных ребер на графе можно увидеть правильный набор кратчайших путей: [A, B, E, F] и [A, C, D, F]. Алгоритм Суурбалле сложен, но показывает основные моменты вычисления непересекающихся деревьев, в том числе то, насколько сложно их вычислить. Максимально избыточные деревья Более простой альтернативой алгоритму Суурбалла для вычисления непересекающихся деревьев является вычисление максимально избыточных деревьев (Maximally Redundant Trees-MRT). Чтобы лучше понять MRT - это изучить Depth First Search (DFS), особенно нумерованный DFS. Рисунок 18 используется в качестве иллюстрации. На рисунке 18 левая сторона представляет простую топологию. Правая-ту же топологию, которая была пронумерована с помощью DFS. Предполагая, что алгоритм DFS, используемый для «обхода» дерева, всегда выбирает левый узел над правым, процесс будет выглядеть примерно так: 01 main { 02 dfs_number = 1 03 root.number = dfs_number 04 recurse_dfs(root) 05 } 06 recurse_dfs(current) { 07 for each neighbor of current { 08 child = left most neighbor (not visited) 09 if child.number == 0 { 10 dfs_number++ 11 child.number = dfs_number 12 if child.children > 0 { 13 recurse_dfs(child) 14 } 15 } 16 } 17 } Лучший способ понять этот код-пройти рекурсию несколько раз, чтобы увидеть, как она работает. Используя рисунок 18: При первом вызове recurse_dfs в качестве текущего узла устанавливается A или root. Оказавшись внутри recurse_dfs, выбирается крайний левый узел A или B. B не имеет номера при входе в цикл, поэтому оператор if в строке 09 верен. B назначается следующий номер DFS (строка 11). У B есть дочерние элементы (строка 12), поэтому recurse_dfs вызывается снова с B в качестве текущего узла. Оказавшись внутри (второго уровня) recurse_dfs, выбирается крайний левый сосед B, которым является E. E не имеет номера DFS, поэтому оператор if в строке 09 верен. E назначается следующий номер DFS (3) E не имеет дочерних элементов, поэтому обработка возвращается к началу цикла. F теперь является крайним левым соседом B, который не был посещен, поэтому он назначен дочернему элементу. F не имеет числа, поэтому оператор if в строке 09 верен. F назначается следующий номер DFS (4). У B больше нет дочерних элементов, поэтому цикл for в строке 07 завершается ошибкой, и программа recurse_dfs завершается. Однако на самом деле recurse_dfs не выходит - он просто «возвращается» к предыдущему уровню рекурсии, то есть к строке 14. Этот уровень рекурсии все еще обрабатывает соседей A. C - следующий сосед A, который не был затронут, поэтому дочерний элемент установлен в C. И так далее Изучение номеров узлов в правой части рисунка 18 приводит к следующим интересным наблюдениям: Если A всегда следует за возрастающим числом, чтобы достичь D,оно будет следовать по пути [A, C,G,D]. Если D всегда следует за уменьшающимся числом DFS, чтобы достичь A,он будет следовать по пути [D, A]. Эти два пути на самом деле не пересекаются. Это свойство сохраняется для всех топологий, которым были присвоены номера в результате поиска DFS: путь, следующий за постоянно увеличивающимися числами, всегда будет не пересекаться с путем, который всегда следует за убывающими числами. Это именно то свойство, на котором MRT строят непересекающиеся пути. Однако проблема с нумерацией DFS заключается в том, что это трудно сделать почти в реальном времени. Должен быть какой-то избранный корень, трафик на локальном уровне неоптимален (во многом как Minimum Spanning Tree или MST), и любые изменения в топологии требуют перестройки всей схемы нумерации DFS. Чтобы обойти эти проблемы, MRT строит непересекающиеся топологии, используя тот же принцип, но другим способом. Рисунок 19 используется для пояснения. Первым шагом в построении MRT является поиск короткого цикла в топологии от корня (обычно эти петли обнаруживаются с помощью алгоритма SPF Дейкстры). В этом случае в качестве корня будет выбран A, а цикл будет [A, B, C, D]. Этот первый цикл будет использоваться как первая из двух топологий, скажем, красная топология. Обращение цикла к [A, D, C, B] создает непересекающуюся топологию, скажем, синюю топологию. Эта первая пара топологий через этот короткий цикл называется «ухом». Для расширения диапазона МРТ к первому добавляется второе ухо. Для этого открывается второй цикл, на этот раз через [A, D, F, E, B], а непересекающаяся топология - [A, B, E, F, D]. Возникает вопрос: какое из этих двух расширений топологии следует добавить к красной топологии, а какое - к синей? Здесь вступает в игру форма нумерации DFS. Каждому устройству в сети уже должен быть назначен идентификатор либо администратором, либо через какой-либо другой механизм. Эти идентификаторы должны быть уникальными для каждого устройства. В схеме нумерации DFS также существует концепция нижней точки, которая указывает, где на конкретном дереве прикрепляется этот узел, а также какие узлы присоединяются к дереву через этот узел. Учитывая эти уникальные идентификаторы и возможность вычислять нижнюю точку, каждый узел в сети может быть упорядочен так же, как ему был присвоен номер в процессе нумерации DFS. Ключ в том, чтобы знать, как порядок соответствует существующей красной и синей топологиям. Предположим, что нижняя точка B выше, чем C, если топология [A, B, C, D] является частью красной топологии. Для любого другого «уха» или петли в топологии, которая проходит через B и C, направление «уха», в котором B меньше C, должно быть помещено в красную топологию. Петля в обратном направлении должна быть размещена на синей топологии. Это объяснение является довольно поверхностным, но оно дает вам представление о том, как MRT образуют непересекающиеся топологии. Двусторонняя связь В этой и предыдущей лекциях было описано несколько различных способов вычисления пути без петель (или набора непересекающихся путей) через сеть. В каждом из этих случаев вычисленный путь является однонаправленным - от корня дерева до краев или достижимых мест назначения. Фактически, обратного пути не существует. Другими словами, источник может иметь возможность достичь пункта назначения по пути без петель, но может не быть обратного пути от пункта назначения к источнику. Это может быть необычный режим отказа в некоторых типах каналов, результат фильтрации информации о доступности или ряд других ситуаций в сети. Примечание. Двусторонняя связь не всегда нужна. Рассмотрим, например, случай с подводной лодкой, которая должна получать информацию о своей текущей задаче, но не может передавать какую-либо информацию, не раскрывая своего текущего местоположения. Желательна возможность отправлять пакеты устройствам, расположенным на подводной лодке, даже если к ним нет двусторонней связи. Плоскости управления должны быть модифицированы или специально спроектированы для обработки такого необычного случая, поскольку обычно для правильной работы сети требуется двустороннее соединение. Еще одна проблема, с которой должны столкнуться плоскости управления в области вычислительных трактов, - это обеспечение сквозной двусторонней связи. Уровень управления может решить эту проблему несколькими способами: Некоторые плоскости управления просто игнорируют эту проблему, что означает, что они предполагают, что какой-то другой протокол, например транспортный протокол, обнаружит это состояние. Плоскость управления может проверить наличие этой проблемы во время расчета маршрута. Например, при вычислении маршрутов с использованием алгоритма Дейкстры можно выполнить проверку обратной связи при вычислении путей без петель. Выполнение этой проверки обратной линии связи на каждом этапе вычислений может гарантировать наличие двусторонней связи. Плоскость управления может предполагать двустороннюю связь между соседями, обеспечивая сквозную двустороннюю связь. Плоскости управления, которые выполняют явные проверки двусторонней связи для каждого соседа, могут (как правило) безопасно предполагать, что любой путь через этих соседей также поддерживает двустороннюю связь.
img
Всем привет! Сегодня в статье мы рассмотрим функцию обратного вызова Callback в Cisco Unified Communications Manager (CUCM) . Функция Callback используется для информирования вызывающего абонента о доступности вызываемого абонента, в случае если он был занят. Настройка Для начала нужно перейти в меню Cisco Unified Serviceability и там перейти во вкладку Tools → Service Activation. Здесь выбрать наш сервер и убедиться что напротив Cisco Extended Functions стоит галочка. Далее настроим Softkey (подробно об этом можно почитать в нашей статье). Для этого переходим меню Cisco Unified CM Administration и находим вкладку Device → Device Settings → Softkey Template. Здесь нажимаем Add New, выбираем шаблон Standard User и нажимаем Copy, после чего указываем имя нового шаблона и его описание. После этого в правом верхнем углу из выпадающего меню выбираем Configure Softkey Layout и нажимаем Go. В открывшемся окне из поля Unselected Softkeys нужно перенести в Selected Softkeys пункт Callback, нажав на кнопку со стрелкой вправо. Сделать это нужно для состояний On Hook, Connected Transfer и Ring Out, которые выбираются в поле Select a call state to configure. После этого применим шаблон кнопок к телефону. Переходим во вкладку → Phone и находим телефон, на который мы хотим применить шаблон. Шаблон нужно выбрать в строке Softkey Template, после чего нажать Save и Apply Config. В результате у нас на телефоне в нижней части экрана появится кнопка CallBack. Теперь посмотрим, как это работает. Делаем звонок с телефона А на телефон Б и телефон Б занят. На телефоне А нажимаем кнопку CallBack. После этого нажимаем OK и сообщение сменится на CallBack is activated. Чтобы убрать это сообщение нажимаем Exit. Чтобы деактивировать функцию нужно нажать кнопку Cancel. Теперь когда телефон Б освободится на телефоне А появится окно со звуковым сигналом с сообщением о доступности телефона Б. Чтобы сразу позвонить ему нужно нажать кнопку Dial.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59