По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
К Amo можно подключить любой почтовый сервис, который поддерживает протокол IMAP. Кроме того, если почта принадлежит одному из крупнейших сервисов вроде Yandex или Gmail, то интеграция проходит в пару кликов. Подключение почты Для подключения канала почты достаточно перейти во вкладку «Почта» и выбрать «Настройки»: Далее в левом верхнем углу нужно выбрать «Добавить почту». Если почту нельзя подключить с помощью встроенного виджета, то понадобится ввести информацию о протоколах, используемых почтовым агентом. Эти данные можно узнать в настройках своего почтового ящика. AmoCRM есть два профиля для интеграции почты: персональная почта; корпоративная почта; Корпоративная почта К сообщениям, поступающим на данный ящик, будут иметь доступ менеджеры подключенные к системе. Можно использовать ящик, созданный специально для отдела продаж. История переписки с клиентами всегда будет у сотрудников перед глазами, легко оформляются заявки, поступающие через этот канал. Чтобы подключить корпоративную почту, просто введите адрес в соответствующее поле. Персональная почта Главное отличие персональной почтой от корпоративной в том, что доступ к переписке будет открыт только одному человеку. При этом можно открыть доступ ещё нескольким пользователям. Личная почта подключается точно так же как и корпоративная. Достаточно ввести адрес в соответствующее поле. После клика на кнопку «Продолжить» потребуется подтверждение со стороны провайдера. Разрешите доступ Amo к чтению входящих сообщений и отправке новых. Далее выберите профиль «Персональный» или «Корпоративный». Импорт писем При первичном импорте писем из почты можно так же извлечь контакты из всех писем, где есть хотя бы одно исходящее сообщение. В первый раз можно импортировать только 500 писем за прошедший месяц. Шаблоны писем Для удобства и увеличения скорости общения с потенциальными клиентами в Amo есть инструмент, позволяющий создавать шаблоны электронных писем. В разделе «Почта» выбираете «Настройки», в верхней области располагаются настройки шаблонов. Нажмите «Добавить шаблон», задайте ему название и введите текст. Шаблоны удобны, когда требуется отправить счет-фактуру, отправить напоминание или благодарность клиенту, подтвердить заказ и много другое. В шаблонах можно использовать универсальные переменные, которые подставляют имя клиента и менеджера из карточки. Заявки из корпоративной почты К сожалению, в AmoCRM пока не реализована функция, которая бы переводила письма, поступающие на корпоративную почту в заявки. При этом если клиент написал вам не один раз, его данные будут подтягиваться в его карточку контакта. Типичные ошибки подключения Во время работы с почтой через систему могут возникать ошибки. Большинство из них решаются довольно просто. Ошибка авторизации: Появление этой ошибки делает невозможным отправку сообщений, а «Входящие» как будто замерли. Высока вероятность того, что изменился пароль от почтового ящика. Для исправления ошибки требуется отключить почтовый ящик, не удаляя письма, и попробовать подключить его заново. Не отправляется письмо с ошибкой «Недостаточно прав»: В этой ситуации необходимо обратить внимание на свой почтовый провайдер. Такая ошибка говорит о том, что SMTP не позволяет отправить письмо с этого адреса. Проверьте завершена ли полностью регистрация на почтовом сервисе. Возможно, придется попросить провайдера включить Ip-адреса, с которых amo отправляет письма, в список безопасных и разрешенных. Проблемы с подключением ящика: В этом случае стоит проверить, не установлена ли двухфакторная аутентификация при входе в ящик, а так же корректность данных сервера, если почтовый ящик подключается вручную.
img
Существует большое количество методов аутентификации клиентов беспроводных сетей при подключении. Эти методы появлялись по мере развития различных беспроводных технологий и беспроводного оборудования. Они развивались по мере выявления слабых мест в системе безопасности. В этой статье рассматриваются наиболее распространенные методы проверки подлинности. Открытая аутентификация Стандарт 802.11 предлагал только два варианта аутентификации клиента: open authentication и WEP. Open authentication-предполагает открытый доступ к WLAN. Единственное требование состоит в том, чтобы клиент, прежде чем использовать 802.11, должен отправить запрос аутентификации для дальнейшего подключения к AP (точке доступа). Более никаких других учетных данных не требуется. В каких случаях используется open authentication? На первый взгляд это не безопасно, но это не так. Любой клиент поддерживающий стандарт 802.11 без проблем может аутентифицироваться для доступа к сети. В этом, собственно, и заключается идея open authentication-проверить, что клиент является допустимым устройством стандарта 802.11, аутентифицируя беспроводное оборудование и протокол. Аутентификация личности пользователя проводится другими средствами безопасности. Вы, вероятно, встречали WLAN с open authentication, когда посещали общественные места. В таких сетях в основном аутентификация осуществляется через веб-интерфейс. Клиент подключается к сети сразу же, но предварительно должен открыть веб-браузер, чтобы прочитать и принять условия использования и ввести основные учетные данные. С этого момента для клиента открывается доступ к сети. Большинство клиентских операционных систем выдают предупреждение о том, что ваши данные, передаваемые по сети, не будут защищены. WEP Как вы понимаете, open authentication не шифрует передаваемые данные от клиента к точке доступа. В стандарте 802.11 определен Wired Equivalent Privacy (WEP). Это попытка приблизить беспроводную связь к проводному соединению. Для кодирования данных WEP использует алгоритм шифрования RC4. Данный алгоритм шифрует данные у отправителя и расшифровывает их у получателя. Алгоритм использует строку битов в качестве ключа, обычно называемого WEP- ключом. Один кадр данных-один уникальный ключ шифрования. Расшифровка данных осуществляется только при наличии ключа и у отправителя, и у получателя. WEP- это метод безопасности с общим ключом. Один и тот же ключ должен быть как у отправителя, так и получателя. Этот ключ размещается на устройствах заранее. WEP-ключ также может использоваться в качестве дополнительного метода аутентификации, а также инструмента шифрования. Если клиент отправляет неправильный ключ WEP, он не подключится к точке доступа. Точка доступа проверяет знание клиентом ключа WEP, посылая ему случайную фразу вызова. Клиент шифрует фразу вызова с помощью WEP и возвращает результат точке доступа (АР). АР сравнивает шифрование клиента со своим собственным, чтобы убедиться в идентичности двух ключей WEP. Длина WEP - ключей могут быть длиной 40 или 104 бита, представленные в шестнадцатеричной форме из 10 или 26 цифр. Как правило, более длинные ключи предлагают более уникальные биты для алгоритма, что приводит к более надежному шифрованию. Это утверждение не относится к WEP. Так как WEP был определен в стандарте 802.11 в 1999 году, и соответственно сетевые беспроводные адаптеры производились с использованием шифрования, специфичного для WEP. В 2001 году были выявлены слабые места WEP, и началась работа по поиску более совершенных методов защиты беспроводной связи. К 2004 году поправка 802.11i была ратифицирована, и WEP официально устарел. Шифрование WEP и аутентификация с общим ключом WEP являются слабыми методами защиты WLAN. 802.1x/EAP При наличии только open authentication и WEP, доступных в стандарте 802.11, требовался более безопасный метод аутентификации. Аутентификация клиента обычно включает в себя отправку запроса, получение ответа, а затем решение о предоставлении доступа. Помимо этого, возможен обмен ключами сессии или ключами шифрования в дополнение к другим параметрам, необходимым для клиентского доступа. Каждый метод аутентификации может иметь уникальные требования как уникальный способ передачи информации между клиентом и точкой доступа. Вместо того чтобы встроить дополнительные методы аутентификации в стандарт 802.11, была выбрана более гибкая и масштабируемая структура аутентификации-разработан расширяемый протокол аутентификации (EAP). Как следует из его названия, EAP является расширяемым и не состоит из какого-либо одного метода аутентификации. Вместо этого EAP определяет набор общих функций, которые применяют фактические методы аутентификации, используемые для аутентификации пользователей. EAP имеет еще одно интересное качество: он интегрируется со стандартом управления доступом на основе портов стандарта IEEE 802.1X. Когда порт стандарта 802.1X включен, он ограничивает доступ к сетевому носителю до тех пор, пока клиент не аутентифицируется. Это означает, что беспроводной клиент способен связываться с точкой доступа, но не сможет передавать данные в другую часть сети, пока он успешно не аутентифицируется. Open authentication и WEP аутентификация беспроводных клиентов выполняется локально на точке доступа. В стандарте 802.1 x принцип аутентификации меняется. Клиент использует открытую аутентификацию для связи с точкой доступа, а затем фактический процесс аутентификации клиента происходит на выделенном сервере аутентификации. На рисунке 1 показана трехсторонняя схема стандарта 802.1x, состоящая из следующих объектов: Клиент: клиентское устройство, запрашивающее доступ Аутентификатор: сетевое устройство, обеспечивающее доступ к сети (обычно это контроллер беспроводной локальной сети [WLC]) Сервер аутентификации (AS): устройство, принимающее учетные данные пользователя или клиента и разрешающее или запрещающее доступ к сети на основе пользовательской базы данных и политик (обычно сервер RADIUS) На рисунке клиент подключен к точке доступа через беспроводное соединение. AP представляет собой Аутентификатор. Первичное подключение происходит по стандарту open authentication 802.11. Точка доступа подключена к WLC, который, в свою очередь, подключен к серверу аутентификации (AS). Все в комплексе представляет собой аутентификацию на основе EAP. Контроллер беспроводной локальной сети является посредником в процессе аутентификации клиента, контролируя доступ пользователей с помощью стандарта 802.1x, взаимодействуя с сервером аутентификации с помощью платформы EAP. Далее рассмотрим некоторые вариации протокола защиты EAP LEAP Первые попытки устранить слабые места в протоколе WEP компания Cisco разработала собственный метод беспроводной аутентификации под названием Lightweight EAP (LEAP). Для проверки подлинности клиент должен предоставить учетные данные пользователя и пароля. Сервер проверки подлинности и клиент обмениваются челендж сообщениями, которые затем шифруются и возвращаются. Это обеспечивает взаимную аутентификацию. Аутентификация между клиентом и AS осуществляется только при успешной расшифровке челендж сообщений. На тот момент активно использовалось оборудование, работавшее с WEP- протоколом. Разработчики протокола LEAP пытались устранить слабые места WEP применением динамических, часто меняющихся ключей WEP. Тем не менее, метод, используемый для шифрования челендж сообщений, оказался уязвимым. Это послужило поводом признать протокол LEAP устаревшим. Существуют организации, которые все еще используют данный протокол. Не рекомендуется подключаться к таким сетям. EAP-FAST EAP-FAST (Flexible Authentication by Secure Tunneling) безопасный метод, разработанный компанией Cisco. Учетные данные для проверки подлинности защищаются путем передачи зашифрованных учетных данных доступа (PAC) между AS и клиентом. PAC- это форма общего секрета, который генерируется AS и используется для взаимной аутентификации. EAP-FAST- это метод состоящий из трех последовательных фаз: Фаза 0: PAC создается или подготавливается и устанавливается на клиенте. Фаза 1: после того, как клиент и AS аутентифицировали друг друга обсуждают туннель безопасности транспортного уровня (TLS). Фаза 2: конечный пользователь может быть аутентифицирован через туннель TLS для дополнительной безопасности. Обратите внимание, что в EAP-FAST происходят два отдельных процесса аутентификации-один между AS и клиентом, а другой с конечным пользователем. Они происходят вложенным образом, как внешняя аутентификация (вне туннеля TLS) и внутренняя аутентификация (внутри туннеля TLS). Данный метод, основанный на EAP, требует наличие сервера RADIUS. Данный сервер RADIUS должен работать как сервер EAP-FAST, чтобы генерировать пакеты, по одному на пользователя. PEAP Аналогично EAP-FAST, защищенный метод EAP (PEAP) использует внутреннюю и внешнюю аутентификацию, однако AS предоставляет цифровой сертификат для аутентификации себя с клиентом во внешней аутентификации. Если претендент удовлетворен идентификацией AS, то они строят туннель TLS, который будет использоваться для внутренней аутентификации клиента и обмена ключами шифрования. Цифровой сертификат AS состоит из данных в стандартном формате, идентифицирующих владельца и "подписанных" или подтвержденных третьей стороной. Третья сторона известна как центр сертификации (CA) и известна и доверяет как AS, так и заявителям. Претендент также должен обладать сертификатом CA только для того, чтобы он мог проверить тот, который он получает от AS. Сертификат также используется для передачи открытого ключа на видном месте, который может быть использован для расшифровки сообщений из AS. Обратите внимание, что только AS имеет сертификат для PEAP. Это означает, что клиент может легко подтвердить подлинность AS. Клиент не имеет или не использует свой собственный сертификат, поэтому он должен быть аутентифицирован в туннеле TLS с помощью одного из следующих двух методов: MSCHAPv2; GTC (универсальная маркерная карта): аппаратное устройство, которое генерирует одноразовые пароли для пользователя или вручную сгенерированный пароль; EAP-TLS PEAP использует цифровой сертификат на AS в качестве надежного метода для аутентификации сервера RADIUS. Получить и установить сертификат на одном сервере несложно, но клиентам остается идентифицировать себя другими способами. Безопасность транспортного уровня EAP (EAP-TLS) усиливает защиту, требуя сертификаты на AS и на каждом клиентском устройстве. С помощью EAP-TLS AS и клиент обмениваются сертификатами и могут аутентифицировать друг друга. После этого строится туннель TLS, чтобы можно было безопасно обмениваться материалами ключа шифрования. EAP-TLS считается наиболее безопасным методом беспроводной аутентификации, однако при его реализации возникают сложности. Наряду с AS, каждый беспроводной клиент должен получить и установить сертификат. Установка сертификатов вручную на сотни или тысячи клиентов может оказаться непрактичной. Вместо этого вам нужно будет внедрить инфраструктуру открытых ключей (PKI), которая могла бы безопасно и эффективно предоставлять сертификаты и отзывать их, когда клиент или пользователь больше не будет иметь доступа к сети. Это обычно включает в себя создание собственного центра сертификации или построение доверительных отношений со сторонним центром сертификации, который может предоставлять сертификаты вашим клиентам.
img
В сегодняшней статье покажем пример настройки DMVPN – Dynamic Multipoint VPN, что является VPN решением компании Cisco. Данное решение используется, когда требуется высокая масштабируемость и легкость настройки при подключении филиалов к головному офису. DMPVN одно из самых масштабируемых и эффективных решений VPN поддерживаемых компанией Cisco. В основном оно используется при топологии Hub-and-Spoke, где вы хотели бы видеть прямые VPN туннели Spoke-to-Spoke в дополнение к обычным Spoke-to-Hub туннелям. Это означает, что филиалы смогут общаться с друг другом напрямую, без необходимости прохождение трафика через HQ. Как уже упоминали, эта технология является проприетарной технологией Cisco. Если вам необходимо подключить более десяти сайтов к головному офису, то DMPVN будет идеальным выбором. Кроме того, DMPVN поддерживает не только Hub-and-Spoke, но и Full-Mesh топологию, так как все сайты имеют между собой связность без необходимости настройки статических VPN туннелей между сайтами. Некоторые характеристики DMVPN Для начала перечислим важные характеристики данного способа организации Site-to-Site VPN для лучшего понимания: Центральный маршрутизатор (HUB) - данный роутер работает как DMVPN сервер, и Spoke маршрутизаторы работают как DMVPN клиенты; У данного маршрутизатора есть публичный статический IP-адрес на WAN интерфейсе; У Spoke маршрутизаторов на WAN интерфейсах может как статический, так и динамический публичный IP-адрес; У каждого филиала (Spoke) есть IPSEC туннель к головному офису (Hub); Spoke-to-Spoke - туннели устанавливаются при возникновении необходимости, когда есть движение трафика между филиалами. Таким образом, трафик может не ходить через головной офис, а использовать прямые туннели между филиалами; Все туннели используют Multipoint GRE c IPSEC; NHRP (Next Hop Resolution Protocol) - данный протокол используется для установления соответствий между приватными IP туннельных интерфейсов с публичными WAN адресами Описанные выше NHRP соответствия будут храниться на NHRP сервере, чем в нашем случае является HUB роутер. Каждый филиал устанавливает соединение с головным офисом и регистрирует свой публичный IP-адрес и его приватный IP-адрес тунеля; Когда филиалу необходимо отправить пакеты в подсеть другого филиала, он запрашивает NHRP сервер для получения информации о внешнем публичном адресе целевого филиала; Для лучшей масштабируемости советуем использовать один из протоколов динамический маршрутизации между всеми роутерами – например, EIGRP; Еще раз кратко о технологиях, которые использует DMVPN: Multipoint GRE; IPSEC; NHRP – Next Hop Resolution Protocol; Статическая или динамическая маршрутизация; Настройка маршрутизатора Конкретно в нашем примере у нас будет HUB маршрутизатор и два филиала. И, как было описано ранее, HUB – это DMVPN cервер, а филиалы – DMPVN клиенты. В нашем примере в качестве маршрутизатора используется CISCO1921/K9 Сначала настраиваем HUB маршрутизатор – ему необходимо присвоить статический IP – адрес на внешнем WAN-интерфейсе: ! Настраиваем интерфейсы interface GigabitEthernet0/0 description to Internet-WAN ip address 10.10.10.1 255.255.255.252 ! interface GigabitEthernet0/1 description to LAN ip address 192.168.160.1 255.255.255.0 duplex auto ! Настраиваем туннельный интерфейс, который является улучшенным GRE (Multipoint GRE) interface Tunnel1 description DMVPN Tunnel ip address 172.16.1.1 255.255.255.0 // выбираем приватную подсеть для туннелей no ip redirects ip nhrp authentication nhrp1234 // аутентификация между маршрутизаторами ip nhrp network-id 1 // сетевой идентификатор, который должен быть одинаковым на всех маршрутизаторах load-interval 30 keepalive 5 10 tunnel source GigabitEthernet0/0 // назначаем источником туннеля WAN интерфейс tunnel mode gre multipoint // определяем туннель как mGRE tunnel protection ipsec profile protect-gre // шифруем трафик в туннеле с помощью IPSEC ip mtu 1440 // уменьшаем MTU для того, чтобы разрешить оверхед на mGRE и IPSEC ip nhrp map multicast dynamic // разрешаем форвардить мультикаст трафик между туннелями. ! Настраиваем IPSEC на главном роутере crypto isakmp policy 1 encr 3des hash md5 authentication pre-share group 2 crypto isakmp key isakmp1234 address 0.0.0.0 0.0.0.0 // принимать соединения от любого источника при наличии динамических филиалов ! crypto ipsec transform-set TS esp-3des esp-md5-hmac mode tunnel ! ! crypto ipsec profile protect-gre // профиль добавленный к mGRE туннелю для шифрования set security-association lifetime seconds 86400 set transform-set TS ! Настраиваем статическую маршрутизацию на HUB маршрутизаторе ip route 192.168.164.0 255.255.255.0 172.16.1.2 // удаленные подсети доступны через IP удаленного туннеля ip route 192.168.161.0 255.255.255.0 172.16.1.3 // удаленные подсети доступны через IP удаленного туннеля Затем настраиваем маршрутизаторы в филиалах (Spoke роутеры) - у одного маршрутизатора статический айпишник на WAN интерфейсе, и у другого динамический, получаемый по DHCP. Первый маршрутизатор в филиале, с динамическим IP: interface GigabitEthernet0/0 description WAN to Internet ip address dhcp duplex auto speed auto interface GigabitEthernet0/1 description To LAN ip address 192.168.164.1 255.255.255.0 duplex auto speed auto interface Tunnel1 ip address 172.16.1.2 255.255.255.0 // помещаем в ту же подсеть что и другие туннели no ip redirects ip nhrp map multicast dynamic // разрешаем форвардить мультикаст трафик между туннелями tunnel source GigabitEthernet0/0 // “source”- WAN интерфейс tunnel mode gre multipoint tunnel protection ipsec profile protect-gre ip nhrp authentication nhrp1234 ip nhrp map 172.16.1.1 10.10.10.1 // соответствие HUB адреса туннеля с HUB адресом WAN ip nhrp network-id 1 ip nhrp nhs 172.16.1.1 // настройка NHRP ip nhrp registration no-unique // если NHRP процесс завершился (поиск соответствия) для определенного IP, то больше данный процесс не запустится ip nhrp map multicast 10.10.10.1 // Отправка milticast трафика только в Hub. Головной маршрутизатор будет получать весь мультикаст трафик (например, обновления протокола маршрутизации) и отправлять его всем Spoke маршрутизаторам ip mtu 1440 load-interval 30 keepalive 5 10 crypto isakmp policy 1 encr 3des hash md5 authentication pre-share group 2 crypto isakmp key isakmp1234 address 0.0.0.0 0.0.0.0 // Филиалы должны разрешать подклюения с любого адреса для формирования IPSEC VPN туннелей с другими филиалами ! ! crypto ipsec transform-set TS esp-3des esp-md5-hmac mode tunnel ! crypto ipsec profile protect-gre set security-association lifetime seconds 86400 set transform-set TS ip route 192.168.160.0 255.255.255.0 172.16.1.1 // Маршрут для HUB ip route 192.168.161.0 255.255.255.0 172.16.1.3 // Маршрут для другого филиала Spoke site Второй филиальный маршрутизатор, со статическим IP: interface GigabitEthernet0/0 description TO Internet ip address 10.10.10.9 255.255.255.252 duplex auto speed auto interface GigabitEthernet0/1 description To: LAN ip address 192.168.161.1 255.255.255.0 duplex auto speed auto interface Tunnel1 ip address 172.16.1.3 255.255.255.0 // должен быть в той же подсети что и другие туннели no ip redirects ip nhrp map multicast dynamic // разрешаем форвард мульткастов между туннелями. tunnel source GigabitEthernet0/0 tunnel mode gre multipoint tunnel protection ipsec profile protect-gre ip nhrp authentication nhrp1234 ip nhrp map 172.16.1.1 10.10.10.1 // мапируем адрес HUB тунеля к WAN адресу ip nhrp network-id 1 ip nhrp nhs 172.16.1.1 // настраиваем NHRP клиент с указанием адреса сервера ip nhrp registration no-unique ip nhrp map multicast 10.10.10.1 ip mtu 1440 load-interval 30 keepalive 5 10 crypto isakmp policy 1 encr 3des hash md5 authentication pre-share group 2 crypto isakmp key isakmp1234 address 0.0.0.0 0.0.0.0 ! crypto ipsec transform-set TS esp-3des esp-md5-hmac mode tunnel ! !crypto ipsec profile protect-gre set security-association lifetime seconds 86400 set transform-set TS ip route 192.168.160.0 255.255.255.0 172.16.1.1 // маршрут до головного маршрутизатор ip route 192.168.164.0 255.255.255.0 172.16.1.2 // маршрут до другого филиала Переходим к тестированию: show dmvpn // проверяем статус DMVPN и NHRP show crypto isakmp sa // проверяем IPSEC cвязность между маршрутизаторами ping 192.168.164.1 // пингуем для проверки ping 192.168.1.1 В нашем примере использовалась статическая маршрутизация, но при большом количестве филиалов необходимо использовать протоколы динамический маршрутизации для уменьшения ручного труда и риска ошибки.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59