По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Протокол маршрутизации OSPF (Open Shortest Path First) (про него можно прочитать тут, а про его настройку здесь) для обмена информации о топологии сети использует сообщения LSA (Link State Advertisement). Когда роутер получает LSA сообщение, он помещает его в базу Link-State DataBase (LSDB). Когда все базы между маршрутизаторами синхронизированы, OSPF использует алгоритм Shortest Path First, чтобы высчитать лучший маршрут между сетями. LSA содержат в себе информацию о маршруте передается внутри Link State Update (LSU) пакета. Каждый LSU пакет содержит в себе один или несколько LSA, и когда LSU отправляется между маршрутизаторами OSPF, он распространяет информацию LSA через сеть. Каждый LSA используется в определенных границах сети OSPF. Выглядит это вот так: Типы LSA OSPF в настоящее время определяет 11 различных типов LSA, однако, несмотря на большое разнообразие LSA, только около половины из них обычно встречаются в сетях OSPF, но мы рассмотрим их все. LSA Тип 1 – OSPF Router LSA Пакеты LSA Type 1 (Router LSA) отправляются между маршрутизаторами в пределах одной и той же зоны (area) где они были созданы и не покидают эту зону. Маршрутизатор OSPF использует пакеты LSA Type 1 для описания своих собственных интерфейсов, а также передает информацию о своих соседях соседним маршрутизаторам в той же зоне. LSA Тип 2 – OSPF Network LSA Пакеты LSA Type 2 (Network LSA) генерируются Designated Router’ом (DR) для описания всех маршрутизаторов, подключенных к его сегменту напрямую. Пакеты LSA Type 2 рассылаются между соседями в одной и той же зоны где они были созданы и остаются в пределах этой зоны. LSA Тип 3 – OSPF Summary LSA Пакеты LSA Type 3 (Summary LSA) генерируются с помощью пограничных маршрутизаторов Area Border Routers (ABR) и содержат суммарное сообщение о непосредственно подключенной к ним зоне и сообщают информацию в другие зоны, к которым подключен ABR. Пакеты LSA Type 3 отправляются в несколько зон по всей сети. На рисунке показано как маршрутизатор R2 ABR создает Type 3 Summary LSA и отправляет их в зону Area 0. Таким же образом R3 ABR роутер создает пакеты Type 3 и отправляет их в Area 2. В таблице маршрутизации маршруты, полученные таким образом, отображаются как “O IA” Видео: протокол OSPF (Open Shortest Path First) за 8 минут LSA Тип 4 – OSPF ASBR Summary LSA Пакеты LSA Type 4 (ASBR Summary LSA) - это LSA, которые объявляют присутствие автономного пограничного маршрутизатора Autonomous System Border Router (ASBR) в других областях. На схеме, когда R2 (ABR) принимает пакет LSA Type 1 от R1, он создаст пакет LSA Type 4 (Summary ASBR LSA), который передает маршрут ASBR, полученный из Area 1, и вводит его в Area 0. Хотя пакеты LSA Type 4 используются ABR для объявления маршрута ASBR через их зоны, он не будет использоваться самим ASBR в пределах его локальной зоны (Area 1); ASBR использует LSA Type 1 для информирования своих соседей (в данном случае R2) в своих сетях. LSA Тип 5 – OSPF ASBR External LSA Пакеты LSA Type 5 (ASBR External LSA) генерируются ASBR для передачи внешних перераспределенных маршрутов в автономную систему (AS) OSPF. Типичным примером LSA Type 5 будет внешний префикс или маршрут по умолчанию (default router), как показано на схеме. Этот внешний маршрут/префикс перераспределяется в OSPF-сеть ASBR (R1) и в таблице маршрутизации будет отображаться как "O E1" или "O E2". LSA Тип 6 – OSPF Group Membership LSA Пакеты LSA Type 6 (Group Membership LSA) были разработаны для протокола Multicast OSPF (MOSPF) , который поддерживает многоадресную маршрутизацию через OSPF. MOSPF не поддерживается Cisco и не пользуется широкой популярностью. LSA Тип 7 – OSPF Not So Stubby Area (NSSA) External LSA Пакеты LSA Type 7 (NSSA External LSA) используются для некоторых специальных типов зон, которые не позволяют внешним распределенным маршрутам проходить через них и таким образом блокируют распространение в них LSA Type 5. LSA Type 7 действуют как маска для LSA Type 5 пакетов, позволяя им перемещаться по этим специальным зоам и достигать ABR, который может переводить пакеты LSA Type 7 обратно в пакеты LSA Type 5. На схеме ABR R2 переводит LSA Type 7 в LSA Type 5 и рассылает его в сеть OSPF. LSA Тип 8 – OSPF External Attributes LSA (OSPFv2) / Link Local LSA (OSPFv3) Пакеты LSA Type 8 в OSPFv2 (IPv4) называются внешними атрибутами LSA и используются для передачи атрибутов BGP через сеть OSPF, в то время как адреса BGP передаются через LSA Type 5 пакеты, однако, эта функция не поддерживается большинством маршрутизаторов. С OSPFv3 (IPv6) , LSA Type 8 переопределяется для передачи информации IPv6 через сеть OSPF. LSA Тип 9, 10 и 11 Обычно LSA этих типов используются для расширения возможностей OSPF. Практическое применение этих LSA заключается в Traffic Engineering’е MPLS, где они используются для передачи параметров интерфейса, таких как максимальная пропускная способность, незанятая полоса пропускания и т.д. LSA Тип 9 – OSPF Link Scope Opaque (OSPFv2) / Intra Area Prefix LSA (OSPFv3) LSA Type 9 в OSPFv2 (IPv4) определяется как Link Scope Opaque LSA для передачи OSPF информации. Для OSPFv3 он переопределяется для обработки префикса связи для специального типа зоны, называемого Stub Area. LSA Тип 10 – OSPF Area Scope Opaque LSA Пакеты LSA Type 10 используются для потоковой передачи информации OSPF через маршрутизаторы других областей. Даже если эти маршрутизаторы не обрабатывают эту информацию, чтобы расширить функциональность OSPF, этот LSA используется для Traffic Engineering’а для объявлений MPLS и других протоколов. LSA Тип 11– OSPF AS Scope Opaque LSA Пакеты LSA Type 11 выполняют ту же задачу, что и пакеты LSA Type 10, но не пересылаются в специальные зоны (Stub зоны)
img
Мы продолжаем знакомить вас настойкой телефонов, и сегодня с IP-АТС Asterisk мы свяжем телефон Yealink SIP-T46S. $dbName_ecom = "to-www_ecom"; $GoodID = "6355410825"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName_ecom) or die(mysql_error()); $query_ecom = "SELECT `model`, `itemimage1`, `price`, `discount`, `url`, `preview115`, `vendor`, `vendorCode` FROM `items` WHERE itemid = '$GoodID';"; $res_ecom=mysql_query($query_ecom) or die(mysql_error()); $row_ecom = mysql_fetch_array($res_ecom); echo 'Кстати, купить '.$row_ecom['vendor'].' '.$row_ecom['vendorCode'].' можно в нашем магазине Merion Shop по ссылке ниже. С настройкой поможем 🔧 Купить '.$row_ecom['model'].''.number_format(intval($row_ecom['price']) * (1 - (intval($row_ecom['discount'])) / 100), 0, ',', ' ').' ₽'; $dbName = "to-www_02"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName) or die(mysql_error()); Настройка Первым делом после подключения телефона к сети нам нужно зайти на его веб-интерфейс, для начала настройки. Там нас встретит входное меню авторизации. Для телефона Yealink SIP-T46S стандартный логин – admin, пароль – admin. После ввода логина и пароля мы попадаем в меню Статус. Чтобы начать настройку нам нужно перейти в меню Аккаунт Тут нужно выбрать какой из 16-ти SIP-аккаунтов мы будем использовать и заполнить следующие поля: Аккаунт – Выбираем какой аккаунт нам нужно настроить Аккаунт – Включено Лейбл – Отображаемое название трубки Отображаемое имя – Имя которое будет отображаться при вызове Имя регистрации – Указываем наш внутренний номер Имя пользователя – Указываем наш внутренний номер Пароль – Пароль для выбранного номера Адрес SIP-сервера – IP-адрес нашей IP-АТС Порт – Указываем номер порта После этого сохраняем и на этой же странице в строке Статус должна появиться надпись Зарегистрировано. Готово! Теперь телефон может звонить. Для изменения основных сетевых настроек мы можем посетить меню Сеть. А Если нужно назначить дополнительные программируемые DSS кнопки (например, BLF), то это можно сделать в меню DSS-кнопки.
img
В настоящее время происходит рост потребности повышения уровня информатизации и увеличения количества узлов беспроводного доступа, особенно в информационно-коммуникационных технологиях. Пользователи, успешно использующие беспроводные информационные ресурсы, могут всегда и в любое время работать над самыми разными задачами, гораздо более эффективно, по сравнению с теми, кто до сих пор остаётся заложниками кабельных соединений для компьютерных сетей благодаря тому, что напрямую зависят от строго запланированной телекоммуникационной инфраструктуры. Беспроводные сети по сравнению с традиционными проводными решениями имеют преимущества, такие как: Просто создать и легко реализовать; Гибкость всей сети на уровне архитектуры, когда есть возможность изменения топологии сети без прерывания процесса, а также подключение, перемещение и отключение мобильных пользователей без потери драгоценного времени; Быстрота проектирования и ввод в эксплуатацию; Беспроводная сеть не нуждается в огромной массе кабелей и длительном прокладывании. Из-за быстрого развития беспроводных сетей появилась возможность осуществлять управление большинством привычных современных устройств. Благодаря этому взаимодействие населения и специальных служб, повышает эффективность работы многих учреждений путём использования электронных порталов. Оперативное реагирование общества на появление инновационных технологий оказывает положительное влияние на развитие городской инфраструктуры. Данные факторы положили начало развитию системы, которая в зарубежных вариантах называется, как "Smart City", что обычно называют "Умный город". Варианты использования таких систем не ограничиваются простым управлением привычных устройств, что позволяет объединить устройства в группы, а их, в свою очередь, в целые экосистемы с одним центром управления. Это позволяет осуществлять гибкую настройку различных действий по расписанию или при выполнении каких-то смежных действий. Например, интеллектуальные уличные фонари функционируют как точки беспроводного доступа к технологии Wi-Fi, оснащены камерой наблюдения, зарядными устройствами для электромобилей и телефонов и даже измеряют качество воздуха. Этот многозадачный уличный фонарь работает как датчик и привод, предоставляя услуги, которые улучшают качество жизни жителей, собирая важные данные об окружающей среде. При всем подобном разнообразии возможностей и удобстве современных технологий, они не лишены серьёзных недостатков. Беспроводные сети являются сетями повышенной опасности с точки зрения возможного наличия уязвимостей, которые могут использоваться осведомленными злоумышленниками, поэтому необходимо принимать комплексные меры по защите. Также существует проблема надежного хранения данных. Существует несколько подходов к реализации данной задачи: хранение данных на едином централизованном сервере, либо применение технологий распределенного хранения данных. Однако разные подходы не лишены своих недостатков. Хранение данных централизованно повышает: Риск кражи базы данных с целью анализа существующих записей и поиска коллизий для существующих хешей; Риск подмены данных для предоставления доступа к системе по ложным данным; Риск удаления данных с целью полного отказа работоспособности системы.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59