По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Все, кто работали с serial интерфейсами, сталкивались с такими вещами как DCE и DTE. Сегодня постараемся разобраться с этими терминами. Serial интерфейсы используются при подключении роутера к глобальной сети WAN (Wide Area Network) . При этом подключение обычно осуществляется через какое-нибудь устройство провайдера – чаще всего это модем или CSU/DSU (Channel Service Unit/Data Service Unit) . В этой схеме модем или CSU/DSU является DCE (Data Communication Equipment) устройством – то есть оборудованием провайдера, которое определяет скорость канала, преобразует и передает данные от оборудования клиента. А со стороны клиента передает эти данные DTE (Data Terminal Equipment) устройство, которое обычно является маршрутизатором или компьютером. Однако в лаборатории мы можем собрать схему, где маршрутизатор может выступать не только в роли DTE, но и в роли DCE. В этом случае нам нужно определить какую роль будет иметь каждый из маршрутизаторов. Это будет зависеть от serial кабеля, которым мы будем подключать маршрутизаторы – один конец используется для подключения к DCE, а другой к DTE. Обычно на кабелях не написано, какую роль имеет каждый из концов, и поэтому тут нам нужно будет воспользоваться командой show controllers [интерфейс]. Router1>en Router1#show controllers serial 2/0 Interface Serial2/0 Hardware is PowerQUICC MPC860 DCE V.35, no clock idb at 0x81081AC4, driver data structure at 0x81084AC0 Здесь в третьей строчке вывода видно, что к роутеру подключен кабель DCE концом. Это значит, что он исполняет роль DCE, а другой роутер – роль DTE. Теперь, когда мы узнали, кто, есть кто, нам нужно вручную задать скорость работы канала на DCE, поскольку в роли DCE у нас маршрутизатор, а не модем или CSU/DSU, как в реальных сетях. Для этого на интерфейсе мы используем команду clock rate [скорость в битах/с] Router1#conf t Router1(config)#int se 2/0 Router1(config-if)#clock rate ? Speed (bits per second 1200 2400 4800 9600 19200 38400 56000 64000 72000 125000 128000 148000 250000 500000 800000 1000000 1300000 2000000 4000000 <300-4000000> Choose clockrate from list above Router(config-if)#clock rate 64000 После этого можно продолжать конфигурацию. Стоит заметить, что команда clock rate не применится на DTE интерфейсе. Router2(config)#int se2/0 Router2(config-if)#clock rate 64000 This command applies only to DCE interfaces
img
Привет, друг! В марте 2017 года на сайте разработчика FreePBX Distro появился новый дистрибутив, который включает в себя FreePBX 14 версии, Linux 7.3 и само ядро обработки телефонных вызовов – Asterisk (11, 13 и 14 версии). Отметим, что на момент написания статьи релиз проходит полномасштабное тестирование и доступен в формате «релиз - кандидата», или просто RC (Release Candidate). В статье рассмотрим процесс установки дистрибутива RC 1 SNG7-FPBX-64bit-1703-1 и проведем беглый обзор новых «фишек». Установка Установку мы будем производить на виртуальной машине в среде виртуализации Hyper-V. После загрузки .iso дистрибутива с сайта разработчика, сравниваем его MD5 - сумму и подключаем его к виртуальному приводу и включаем виртуальную машину: Выбираем рекомендуемую опцию инсталляции и нажимаем Enter: Выбираем опцию вывод детализации информации об установке через VGA и нажимаем Enter: Оставляем селектор на стандартной установке и нажимаем Enter: Начинается процесс установки, который занимает примерно 10-20 минут. По окончанию установки мы увидим соответствующее сообщение. Нажимаем Reboot: Готово. Переходим к изучению нового интерфейса. Новый интерфейс FreePBX 14 Из нововведений сразу в глаза бросается виджет Live Network Usage, который показывает загрузку виду Tx/Rx (передача/прием) на сетевом интерфейсе: Пробежимся по вкладке Admin. Мы нашли дополнительный раздел Updates, в котором теперь можно планировать автоматическое обновление системы и модулей: Во вкладке Applications появился модуль Calendar, который позволяет производить интеграцию с календарями (Outlook, iCal, CalDAV и обычный локальный календарь): Важнейшей особенностью нового интерфейса является UCP (User Control Panel) 14 версии, в котором полностью переделана графическая компонента, визуализация информации, добавлена гибкая система настройки «дашбордов» и настройки виджетов: Мы продолжим следить за новым релизом и держать вас в курсе :)
img
Данное волокно состоит из стекла или пластика и позволяет передавать сигналы в виде света. Чтобы понять, как передаются сигналы в оптическом волокне, нам сначала необходимо разобраться со способами передачи лучей света. Способы распространения сигналов в оптоволокне Современная технология передачи данных поддерживает два метода распространения света в оптических каналах. Для каждого метода требуются волокна с различными физическими характеристиками. Существуют: Многомодовый Одномодовый Многомодовый режим может быть реализован в двух формах: Step- Index Graded- Index Далее более подробно разберем каждый из двух методов. Многомодовый Это название произошло из-за волокна, по которому могут передаваться большое количество световых лучей, двигающихся через сердечник в различных направлениях. Эти лучи перемещаются внутри кабеля в зависимости от структуры сердечника. Многомодовый Step-Index В многомодовом волокне Step-Index от центра к краям плотность ядра остается постоянной. Луч света проходит через эту постоянную плотность по прямой линии, пока не достигнет границы раздела ядра и оболочки. На границе раздела происходит резкое изменение плотности на более низкую, что изменяет угол преломления луча. Внезапность этого изменения обозначается термином Step-index. На рисунке ниже показаны различные лучи, проходящие через многомодовое Step-Index волокно. Часть лучей в середине проходят по прямым линиям через ядро и достигают цели, не отражаясь и не преломляясь. Часть же лучей ударяются о поверхность раздела ядра и оболочки под углом, меньшим критического угла преломления. Эти лучи проникают сквозь оболочку и пропадают. Тем не менее, другие ударяются о край ядра под углами, превышающими критический угол, и отражаются в ядро и с другой стороны, отражаясь назад и вперед по каналу, пока не достигнут цели. Многомодовый Graded-Index Второй тип волокна называется многомодовым Graded-Index. Это волокно уменьшает искажение сигнала через кабель. Слово индекс здесь относится к индексу преломления, а индекс преломления связан с плотностью. Таким образом, волокно с Graded-Index -это волокно с различной плотностью. Плотность самая высокая в центре ядра и постепенно уменьшается до самого низа на краю. На этом рисунке показано влияние этой переменной плотности на распространение световых лучей. Одномодовый Одномодовое волокно использует режим step-index и сильно зависит от источника света, который использует ограниченный угол преломления света, близкий к горизонтали. Волокно изготавливается с гораздо меньшим диаметром, чем у многомодовых волокон, и с существенно меньшей плотностью (показателем преломления). Уменьшение плотности световых пучков приводит к критическому углу преломления, который приближается к 90 градусам, так чтобы лучи распространялись почти горизонтально. В этом случае распространение различных лучей осуществляется практически одинаково и задержки незначительны. Все лучи поступают на сторону приемника вместе и могут быть рекомбинированы без искажений сигнала. Преимущества оптоволоконного кабеля Помехоустойчивость: для передачи данных не используется электрический сигнал, а используется свет. Электромагнитные излучения не создают помех для передачи данных. Единственная возможная помеха-это внешний свет, который изолируется внешней оболочкой. Меньшее затухание сигнала: расстояние волоконно-оптической передачи значительно больше по сравнению с другими управляемыми средами. Сигнал может проходить на многие километры, не требуя регенерации. Более высокая пропускная способность: по сравнению с коаксиальным кабелем или витой парой, волоконно-оптический кабель может поддерживать значительно более высокую пропускную способность, что увеличивает скорость передачи данных. Существует ограничение на скорость передачи данных и использование полосы пропускания по волоконно-оптическому кабелю, причем не носителем, а доступной технологией передачи и приема данных. Недостатки оптоволоконного кабеля Стоимость: этот кабель дорогой, так как любые нарушения технологии изготовления сердечника могут ослабить передаваемый сигнал. Кроме того, лазерный источник света может стоить огромных денег, по сравнению с сотнями генераторов электрических сигналов. Установка / техническое обслуживание: при наличии шероховатости или трещин в сердечнике оптического кабеля приведет к рассеиванию и затуханию сигнала. Все соединения должны быть идеально сварены. Соединения же медных кабелей могут быть сделаны путем резки и обжима с использованием относительно простых инструментов. Хрупкость: оптоволокно может быть легко сломано, чем медный провод, что делает его не транспортабельным, то есть там, где требуется постоянное перемещение оборудования его использовать нельзя или по крайней мере не удобно.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59