По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этой статье мы рассмотрим IPv6 (Internet Protocol version 6), причины, по которым он нам нужен, а также следующий аспект: различия с IPv4. Пока существует Интернет, используется протокол IPv4 для адресации и маршрутизации. Однако проблема с IPv4 заключается в том, что у нас закончились адреса. Так что же случилось с IPv4? Что же пошло не так? У нас есть 32 бита, которые дают нам 4 294 467 295 IP-адресов. Когда появился Интернет, мы получили сети класса А, В или С. Класс С дает нам блок из 256 IP-адресов, класс B - это 65.535 IP-адресов, а класс A даже 16 777 216 IP-адресов. Крупные компании, такие как Apple, Microsoft, IBM и др. имеют одну или несколько сетей класса А. Но действительно ли им нужно 16 миллионов IP-адресов? Большинство из этих IP-адресов не были использованы. Поэтому мы начали использовать VLSM, чтобы использовать любую маску подсети, которая нам нравится, и создавать более мелкие подсети, а не только сети класса A, B или C. У нас также имеется NAT и PAT, следовательно, мы имеем много частных IP-адресов за одним публичным IP-адресом. Тем не менее интернет вырос так, как никто не ожидал 20 лет назад. Несмотря на все наши крутые трюки, такие как VLSM и NAT/PAT, нам нужно было больше IP-адресов, и поэтому родился IPv6. А что случилось с IPv5? Хороший вопрос ... IP-версия 5 была использована для экспериментального проекта под названием "Протокол интернет-потока". Он определен в RFC, если вас интересуют исторические причины: http://www.faqs.org/rfcs/rfc1819.html IPv6 имеет 128-битные адреса по сравнению с нашими 32-битными IPv4-адресами. Имейте в виду, что каждый дополнительный бит удваивает количество IP-адресов. Таким образом мы переходим от 4 миллиардов к 8 миллиардам, 16,32,64 и т. д. Продолжайте удвоение, пока не достигнете 128-битного уровня. Просто вы увидите, сколько IPv6-адресов это даст нам: 340,282,366,920,938,463,463,374,607,431,768,211,456; Можем ли мы вообще произнести это? Давайте попробуем вот это: 340 - ундециллионов; 282 - дециллионов; 366 - нониллионов; 920 - октиллионов; 938 - септиллионов; 463 - секстиллионов; 463 - квинтильонов; 374 - квадрильонов; 607 - триллионов; 431 - биллионов; 768 - миллионов; 211 - тысяч; 456. Это умопомрачительно... это дает нам достаточное количество IP-адресов для сетей на Земле, Луне, Марсе и остальной Вселенной. IPv6-адреса записываются в шестнадцатеричном формате. IPv4 и IPv6 несовместимы друг с другом, поэтому многие протоколы были обновлены или заменены для работы с IPv6, вот некоторые примеры: OSPF был обновлен с версии 2 (IPv4) до версии 3 (IPv6); ICMP был обновлен до версии ICMP 6; ARP был заменен на NDP (Neighborhood Discovery Protocol). Заголовок пакета IPv6 содержит адреса источника и назначения, но по сравнению с IPv4 он стал намного проще: Вместо того чтобы уже добавлять все поля в заголовок, заголовок IPv6 использует "следующий заголовок", который ссылается на необязательные заголовки. Поскольку заголовок намного проще, маршрутизаторам придется выполнять меньше работы. А как насчет маршрутизации? Есть ли разница между IPv4 и IPv6? Давайте рассмотрим варианты маршрутизации: Static Routing; RIPng; OSPFv3; MP-BGP4; EIGRP. Вы все еще можете использовать статическую маршрутизацию, как и в IPv4, ничего нового здесь нет. RIP был обновлен и теперь называется RIPng или RIP Next Generation. OSPF для IPv4 на самом деле является версией 2, а для IPv6 у нас есть версия 3. Это отдельный протокол, он работает только на IPv6. Есть только незначительные изменения, внесенные в OSPFv3. BGP (Border Gateway Protocol) - это протокол маршрутизации, который объединяет Интернет вместе.MP-BGP расшифровывается как Multi-Protocol BGP, и он может маршрутизировать IPv6. EIGRP также поддерживает IPv6. Просто имейте в виду, что OSPF и EIGRP поддерживают IPv6, но это отдельные протоколы. Если у вас есть сеть с IPv4 и IPv6, вы будете запускать протокол маршрутизации для IPv4 и еще один для IPv6. Запуск IPv4 и IPv6 одновременно называется двойным стеком. Поскольку эти два протокола несовместимы, в будущем будет происходить переход с IPv4 на IPv6. Это означает, что вы будете запускать оба протокола в своей сети и, возможно, однажды вы сможете отключить IPv4, так как весь интернет будет настроен на IPv6. Давайте взглянем на формат IPv6-адреса: 2041:0000:140F:0000:0000:0000:875B:131B Во-первых, он шестнадцатеричный и гораздо длиннее, чем IPv4-адрес. Существует восемь частей, состоящих из 4 шестнадцатеричных цифр каждая, поэтому 128-битный адрес может быть представлен 32-битными шестнадцатеричными символами. Если вы забыли, как работает шестнадцатеричный код, взгляните на таблицу ниже: В шестнадцатеричной системе счисления мы считаем от 0 до F точно так же, как мы считали бы от 0 до 15 в десятичной системе счисления: A = 10; B = 11; C = 12; D = 13; E = 14; F = 15. Использование шестнадцатеричного кода помогает сделать наши адреса короче, но ввод адреса IPv6 - это все еще большая работа. Представьте себе, что вы звоните другу и спрашиваете его, может ли он пинговать IPv6-адрес 2041:0000:140F:0000:0000:0000:875B:131B, чтобы узнать, может ли он достучаться до своего шлюза по умолчанию. Чтобы облегчить нам работу с такими адресами, можно сделать IPv6-адреса короче. Вот пример: Оригинальный: 2041: 0000:140F:0000:0000:0000:875B:131B Сокращенный: 2041: 0000:140F:: 875B:131B Если есть строка нулей, вы можете удалить их, заменив их двойным двоеточием (::). В приведенном выше IPv6-адресе удалены нули, сделав адрес немного короче. Вы можете сделать это только один раз. Мы можем сделать этот IPv6 адрес еще короче используя другой трюк: Сокращенный: 2041: 0000:140F:: 875B:131B; Еще короче: 2041:0:140F:: 875B:131B Если у вас есть блок с 4 нулями, вы можете удалить их и оставить там только один ноль. Мы также можем удалить все впередистоящие нули: Оригинальный: 2001:0001:0002:0003:0004:0005:0006:0007; Сокращенный: 2001:1:2:3:4:5:6:7 Подытожим небольшие правила: Строку нулей можно удалить, оставив только двоеточие (::). Вы можете сделать только это однажды.; 4 нуля можно удалить, оставив только один ноль. Впередиидущие нули могут быть удалены в пределах одного блока.; Вы не можете удалить все нули, иначе ваше устройство, работающее с IPv6 не поймет, где заполнить нули, чтобы снова сделать его 128-битным.; Вычисление префикса IPV6 мы пропустим, так как ресурсов, рассказывающих об этом в сети Интернет, специальных книгах полно. Нет смысла повторяться. Потребуется некоторое время, чтобы привыкнуть к IPv6-адресации и поиску префиксов, но чем больше вы этим занимаетесь, тем дальше становиться проще. В оставшейся части этой статьи мы еще немного поговорим о различных типах адресации IPv6. IPv4-адреса организованы с помощью "системы классов", где класс A, B и C предназначены для одноадресных IP-адресов, а класс D-для многоадресной передачи. Большинство IP-адресов в этих классах являются публичными IP-адресами, а некоторые-частными IP-адресами, предназначенными для наших внутренних сетей. Нет такой вещи, как классы для IPv6, но IANA действительно зарезервировал определенные диапазоны IPv6 для конкретных целей. У нас также есть частные и публичные IPv6-адреса. Первоначально идея IPv4 заключалась в том, что каждый хост, подключенный к Интернету, будет иметь общедоступный IP-адрес. Каждая компания получит сеть класса А, В или С, и сетевые инженеры в компании будут дополнительно подсоединять ее так, чтобы каждый хост и сетевое устройство имели общедоступный IP-адрес. Проблема, однако, заключается в том, что адресное пространство IPv4 было слишком маленьким, и выдавать полные сети A, B или C было не очень разумно. Даже если вам требуется только небольшое количество IP-адресов, вы все равно получите сеть класса C, которая дает вам 254 пригодных для использования IP-адреса. Компания, которой требуется 2.000 IP-адресов, получит класс B, который дает вам более 65.000 IP-адресов. Поскольку у нас заканчивались IP-адреса, мы начали использовать такие вещи, как VLSM (избавляясь от идеи класса A, B, C) и настраивали частные IP-адреса в наших локальных сетях, а вместо этого использовали NAT/PAT. Протокол IPv6 предлагает два варианта для одноадресной рассылки: Global Unicast; Unique Local. Раньше существовал третий диапазон адресов, называемый "site local", который начинался с FEC0:: / 10. Этот диапазон изначально предназначался для использования во внутренних сетях, но был удален из стандарта IPv6. Global Unicast передачи IPv6 похожи на публичные IPv4-адреса. Каждая компания, которая хочет подключиться к интернету с помощью IPv6, получит блок IPv6-адресов, которые они могут дополнительно разделить на более мелкие префиксы, чтобы все их устройства имели уникальный IPv6-адрес. Зарезервированный блок называется префиксом глобальной маршрутизации. Поскольку адресное пространство IPv6 настолько велико, каждый может получить префикс глобальной маршрутизации. Давайте посмотрим, как назначаются префиксы IPv6-адресов. Допустим, компания получает префикс 2001:828:105:45::/64. Как они его получили? Мы пройдемся по этой картине сверху вниз: IANA отвечает за распределение всех префиксов IPv6. Они будут назначать реестрам различные блоки. ARIN - для Северной Америки, RIPE -для Европы, Ближнего Востока и Центральной Азии. Всего таких реестров насчитывается 5. IANA присваивает 2001: 800:: /23 RIPE и 2001: 0400::/23 ARIN (и многие другие префиксы).; ISP, который попадает под реестр RIPE, запрашивает блок пространства IPv6. Они получают от них 2001: 0828:: / 32, которые в дальнейшем могут использовать для клиентов.; ISP дополнительно подсоединит свое адресное пространство 2001:0828::/32 для своих пользователей. В этом примере клиент получает префикс 2001:828:105::/48.; IANA зарезервировала определенные диапазоны адресов IPv6 для различных целей, точно так же, как это было сделано для IPv4. Первоначально они зарезервировали IPv6-адреса, которые с шестнадцатеричными 2 или 3 являются global unicast адресами. Это можно записать как 2000:: / 3. В настоящее время они используют все для global unicast рассылки, которая не зарезервирована для других целей. Некоторые из зарезервированных префиксов являются: FD: Unique Local; FF: Multicast; FE80: Link-Local. Обсудим префиксы local и link-local В моем примере клиент получил 2001: 828:105:: / 48 от провайдера, но прежде чем я смогу что-либо сделать с этим префиксом, мне придется разбить на подсети его для различных VLAN и point-to-point соединений, которые у меня могут быть. Подсети для IPv6 - это примерно то же самое, что и для IPv4, но математика в большинстве случаев проще. Поскольку адресное пространство настолько велико, почти все используют префикс /64 для подсетей. Нет смысла использовать меньшие подсети. При использовании IPv4 у нас была часть "сеть" и "хост", а класс A, B или C определяет, сколько битов мы используем для сетевой части: Когда мы используем подсети в IPv4 мы берем дополнительные биты от части хоста для создания большего количества подсетей: И, конечно, в результате у нас будет меньше хостов на подсеть. Подсети для IPv6 используют аналогичную структуру, которая выглядит следующим образом: Префикс global routing был назначен вам провайдером и в моем примере клиент получил его 2001:828:105::/48. Последние 64 бита называются идентификатором интерфейса, и это эквивалентно части хоста в IPv4. Это оставляет нас с 16 битами в середине, которые я могу использовать для создания подсетей. Если я хочу, я могу взять еще несколько битов из идентификатора интерфейса, чтобы создать еще больше подсетей, но в этом нет необходимости. Используя 16 бит, мы можем создать 65.536 подсетей ...более чем достаточно для большинства из нас. И с 64 битами для идентификатора интерфейса на подсеть, мы можем иметь восемнадцать квинтиллионов, четыреста сорок шесть квадриллионов, семьсот сорок четыре триллиона, семьдесят четыре миллиарда, семьсот девять миллионов, пятьсот пятьдесят одну тысячу, шестьсот с чем-то хостов на подсеть. Этого должно быть более чем достаточно! Использование 64-битного идентификатора интерфейса также очень удобно, потому что он сокращает ваш IPv6-адрес ровно наполовину! Допустим, наш клиент с префиксом 2001: 828: 105:: / 48 хочет создать несколько подсетей для своей внутренней сети. Какие адреса мы можем использовать? 16 бит дает нам 4 шестнадцатеричных символа. Таким образом, все возможные комбинации, которые мы можем сделать с этими 4 символами, являются нашими возможными подсетями. Все, что находится между 0000 и FFFF, является допустимыми подсетями: 2001:828:105:0000::/64; 2001:828:105:0001::/64; 2001:828:105:0002::/64; 2001:828:105:0003::/64; 2001:828:105:0004::/64; 2001:828:105:0005::/64; 2001:828:105:0006::/64; 2001:828:105:0007::/64; 2001:828:105:0008::/64; 2001:828:105:0009::/64; 2001:828:105:000A::/64; 2001:828:105:000B::/64; 2001:828:105:000C::/64; 2001:828:105:000D::/64; 2001:828:105:000E::/64; 2001:828:105:000F::/64; 2001:828:105:0010::/64; 2001:828:105:0011::/64; 2001:828:105:0012::/64; 2001:828:105:0013::/64; 2001:828:105:0014::/64; И так далее. Всего существует 65 535 возможных подсетей, поэтому, к сожалению, я не могу добавить их все в статью...теперь мы можем назначить эти префиксы различным соединениям типа point-to-point, VLAN и т. д.
img
Всем привет! Сегодня в статье рассмотрим установку CentOS 7 Minimal, первичную настройку сети и установку графического интерфейса под названием Mate. У нас уже есть статья и видео об установке немного иной редакции CentOS 7 – Network Edition, но при установке Minimal есть несколько тонкостей, о них – ниже. Первое отличие в том, что образ несколько больше - 700 Мб, но это всё равно несравнимо с объемом DVD или Full редакции. Следующее отличие, вытекающее из предыдущего – отсутствует возможность выбрать дополнительный софт для установки (скриншот ниже): В CentOS 7 также добавилась возможность включить сетевой интерфейс непосредственно во время установки – в 6 версии такого не было, однако, я дополнительно продемонстрирую самый наглядный способ настройки сетевого интерфейса в 7 версии. Процесс установки Итак, выполняем все шаги последовательно как указано в нашем видео и статье по установке сетевой версии данной ОС, ждём 15-30 минут и вводим свои логинпароль (предварительно подключившись через терминал). Первым желанием было проверить, работает ли сетевой интерфейс и был ли ему назначен адрес – я ввёл команду ifconfig, и, как оказалось, данная команда на 7 версии является устаревшей и вместо неё необходимо использовать команду ipaddr для вывода информации об интерфейсах и команду iplinkдля вывода статистики на них же. Но так все привыкли к стандартным командам пакета net-tools, его необходимо будет установить с помощью команды yum install net-tools. Однако, помня первое ощущение непонимания, когда у меня не работала сеть в минимальной инсталляции на 6 версии, я хочу дополнительно показать очень простой способ её настройки – об этом ниже. Важно! Команда ifconfig устарела. Для сетевого взаимодействия с сервером рекомендуем пользоваться командой «ip» (ip -a), которая по функциональности (с точки зрения L2 и L3) превосходит «ifconfig». Настройка сетевых интерфейсов с помощью nmtui Вводим команду nmtui - в итоге должен запуститься простой графический интерфейс для настройки сети (скриншот ниже): Я, к примеру, хочу изменить настройки единственного интерфейса – выбираем первую опцию Edit a connection и видим следующую картину: Выбираем Edit… и делаем с интерфейсом всё, что вздумается :) Как видно на скриншоте ниже, наш сервер получил IP - адрес по DHCP – меня это устраивает и я оставлю всё как есть. Главной целью было продемонстрировать данную утилиту – nmtui Установка MATE и необходимых пакетов Итак, почему MATE? Ответ прост – он гораздо легче дефолтного Gnome, очень нетребователен к ресурсам и крайне прост в установке. Итак, производим несколько простых шагов по установке пакетов(ниже): yum groupinstall "Development Tools" - установка необходимого комплекта пакетов для работы GUI (только если уже не установлены) ; yum install epel-release - установка EPEL репозитория; yum groupinstall "X Window system" - установка группового пакета X Window System, это займет около 5 минут. Сам пакет имеет объем 73 Мб; yum groupinstall "MATE Desktop" - установка непосредственно Mate – довольно объемный пакет - 506 Мб; Далее, запускаем GUI! Вводим командуsystemctl isolate graphical.target, вводим имя юзера и пароль, и видим графический интерфейс (скриншот ниже): Если хотите чтобы система по умолчанию запускалась в графическом виде, введите команду systemctl set-default graphical.target rm '/etc/systemd/system/default.target' ln -s '/usr/lib/systemd/system/graphical.target' '/etc/systemd/system/default.target'
img
Сегодня мы подробно поговорим и модификациях протокола SIP, разработанных специально для взаимодействия телефонных сетей VoIP с сетями PSTN – Public Switched Telephone Network (ТфОП), использующих сигнализацию ОКС-7. С развитием IP - сетей , преимущества VoIP телефонии становились всё более очевидными, однако подавляющая часть АТС всё ещё имеет дело с сигнализацией ОКС-7, которая используется в таких сетях как ISDN - Integrated Services Digital Network (Цифровая Сеть с Интеграцией Служб), ТфОП – Телефонная Сеть Общего Пользования, а также в Сетях Подвижной Сотовой Связи (СПСС). В качестве подсистемы, обеспечивающей межстанционную сигнализацию, в данных сетях применяется подсистема ISUP – ISDN User Part. ISUP решает задачи транспортировки сигнальной информации от офисной телефонной станции до станции назначения без обработки данной информации в промежуточных пунктах сигнализации. Прежде всего ISUP необходим для управления установлением соединения. Протокол ISUP имеет множество типов сообщений, каждое из которых применяется на определенном этапе установления соединения. Запомнить назначение всех этих сообщений не представляется возможным. Мы не будем описывать каждое сообщение в отдельности, а лишь приведём примеры основных, встречающихся в трассировках любого вызова по протоколу ISUP. IAM (Initial Address Message) - Самое первое сообщение. Служит для информирования АТС об установлении соединения. Содержит такие параметры как: номер вызывающего и вызываемого абонента, тип данных (данные, голос и другие). ACM (Address Complete Message) - Сообщение о приеме полного номера. Отправляется вызываемой АТС, когда был найден необходимый для установления соединения абонент. В этот момент телефонный аппарат вызываемого абонента начинает звонить, а вызывающий абонент слышит КПВ (Контроль Посылки Вызова) ANM (Answer Message) - Отправляется вызываемой АТС, когда вызывающий абонент снимает трубку. Занимаются двухсторонние разговорные каналы. REL (Release) - Отправляется одной из АТС, когда абонент инициирует завершение соединения (кладёт трубку). RLC (Release complete) - Подтверждение разрыва соединения. Отправляя данное сообщение, АТС уведомляет о том, что разговорный канал свободен и может вновь быть использован. Очевидно, что для сопряжения сетей VoIP с сетями, работающими по сигнализации ОКС-7, необходимо реализовать механизмы прозрачной передачи сообщений ISUP по IP. Для решения данной задачи ITU-T и IETF независимо разработали модификации к протоколу SIP - SIP- I (Internetworking) и SIP – T (Telephony)( RFC 3372) соответственно. При разработке данных модификаций, были учтены следующие требования: Возможность прозрачной передачи сообщений протокола ISUP Возможность маршрутизации сообщения протокола SIP на основе параметров ISUP Возможность передачи транспортной информации при установлении соединения. Выполнение данных условий осуществляется путем инкапсуляции сигнальных сообщений ISUP в SIP, а также трансляцией параметров ISUP в заголовках SIP. Итак, от теории к практике. Рассмотрим простейший пример установления соединения в сети с разнотипной сигнализацией. Допустим, что а Абонент A - пользователь ТфОП, его телефонный аппарат находится за неким узлом связи, Абонент B использует IP Phone, работающий по протоколу SIP. За трансляцию сообщений ISUP в SIP будет отвечать некий многофункциональный шлюз IMG (Integrated Media Gateway) Задержки в сети Как видно из рисунка инициатором вызова выступает Абонент A, на шлюз отправляется сообщение IAM, содержащее номера телефонов, а также дополнительные параметры соединения, IMG в свою очередь инкапсулирует сообщение IAM протокола ISUP, в уже известное нам INVITE протокола SIP. Далее легко проследить каким ещё сообщениям протокола SIP соответствуют некоторые запросы ISUP. Стоит также заметить, что протокол ISUP на этапе разговора открывает некий двухсторонний разговорный канал, идентификатор которого находится в сообщении IAM и называется CIC (Circuit Identification Code). Таким образом, благодаря модификациям протокола SIP на сегодняшний день имеется возможность связать абонентов сетей разных типов, использующих разную сигнализацию для управления установлением соединения.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59