По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
FHRP (Протокол резервирования первого перехода) - это группа протоколов способные обеспечить клиентов отказоустойчивым шлюзом. Что за первый переход такой?. У нас есть коммутируемая среда (SW1) и есть Internet . Internet это маршрутизируемая среда . И для того чтобы перейти из коммутируемой среды , в маршрутизируемую среду для того чтобы выйти в интернет , как раз эти роутеры(R1,R2,VR - Virtual Router) обеспечивают данный переход и для того ,чтобы обеспечить отказоустойчивость этого перехода , его нужно резервировать . А потому и называется протоколы резервирования первого перехода. И все протоколы группы FHRP будут работать в единой логике: R1 , R2 будут прикидываться VR и в случае отказа одного из маршрутизаторов, то его работу возьмет другой. Forwarding Router ( FR ) - это роутер ,который данный момент активен и маршрутизирует трафик . Standby Router ( SR ) - это роутер ,который стоит в резерве и ждет , когда накроется FR ,чтобы перехватите его работу на себя , в случае сбоя маршрутизатора. FHRPs - это группа ,а значит пришло время познакомить вас с этими протоколами. HSRP (Hot Standby Router Protocol) - Проприетарный протокол разработанный Cisco; VRRP (Virtual Router Redundancy Protocol) - Свободный протокол ,сделан на основе HSRP; GLBP (Gateway Load Balancing Protocol) - Проприетарный протоколCisco , обеспечивающий распределение нагрузки на несколько маршрутизаторов( шлюзов) используя 1 виртуальный адрес. CARP( Common Address Redundancy Protocol) - свободный , разработан как часть OpenBSD , портирован во FreeBSD. Итак начнём с HSRP Протокол HSRP рассчитан на 2 роутера, 3 это уже лишний и с этим уже справиться протокол GLBP Предположим ,что R1 это маршрутизатор выхода в интернет и для этого мы поднимем на нём Loopback 1 с адресом 200.200.200.200 и пропишем его в маршруте по умолчанию. Между маршрутизаторами будет настроен RIPv2 и будут анонсированы 2 классовые сети( network 10.0.0.0 и network 192.168.0.0) для простоты анонсирования маршрутов. R2,R1 настраивается также. А теперь по порядку , настроим HSRP: R1(config)# interface e 0/0 - переходим на интерфейс ethernet 0/0 (этот интерфейс смотрит в локальную сеть на коммутатор ) R1(config-if)# ip address 192.168.0.2 255.255.255.0 - задаем ip адрес для физического интерфейса R1(config-if)# standby 1 ip 192.168.0.254 - задаем виртуальный ip адрес (который будет основным шлюзом для свитчей, смотрящих на конфигурируемый роутер). У обоих роутеров он одинаковый R1(config-if)# stanby 1 priority 110 - устанавливаем приоритет данного роутера в 110 (по умолчанию приоритет 100) R1(config-if)# standby 1 preempt - задаем режим приемтинга R1(config-if)# standby 1 authentication md5 key-string MyPassword - задаем аутентификацию, если необходимо. Пароль будет передаваться с защитой алгоритмом хеширования md5, пароль будет MyPassword R1(config-if)# standby 1 timers 100 255 - регулировка таймеров hsrp, где 100 - hello интервал в секундах (как часто посылаются пакеты hello пакеты keep-alive) и 255 - hold interval в секундах (через какой промежуток времени признавать соседа недоступным) R1(config-if)# standby 1 preempt delay minimum 300 - настройка времени задержки (в секундах), через которое роутер будет становиться главным. Эта команда требуется для того,чтобы сначала отработали другие протоколы,прежде чем заработает HSRP . Пример: OSPF включенный на роутере в большой сети не успеет передать маршруты все ,а тут сразу заработает HSRP ,естественно он знать все маршруты не будет,а значить и стабильно гнать трафик тоже. Как раз время delay он будет использовать для того,чтобы дать OSPF передать все маршруты и после этого вкл HSRP. Сам VPC должен получить следующие настройки: IP : 192.168.0.10/24 GW: 192.168.0.254 Главное ,чтобы клиент был в одной подсети и в качестве шлюза был виртуальный IP адрес. TRACKING Также полезно вешать TRACK на интерфейсы ,так как HSRP работает только в сторону ,куда направлен интерфейс ,то он не сможет отработать,когда упадут линки ,смотрящие на роутеры выше.(в данном случае это R3) Router(config)# track 1 interface fa0/1 line-protocol - отслеживаем состояние интерфейса fa0/1, если он падает, то сработает объект отслеживания track 1. Router(config-if)# standby 1 track 1 decrement 15 - если сработает объект отслеживания track 1, то текущий приоритет будет понижен на 15 единиц. Router(config-if)# standby 1 track 1 fa0/1 20 - работает только в HSRP. Позволяет отслеживать интерфейс без дополнительного создания объекта отслеживания. R1,R2,R0 будут настраиваться одинаково, принцип сохраняется. А теперь нюансы HSRP При работе нескольких VLAN , HSRP может идти трафик не совсем рационально из-за протокола STP. Представим ,что R1 это root primary за 10 VLAN, а R2 это ACTIVE router в HSRP . Это значит ,что любой трафик за этот VLAN будет идти следующим образом:VPC - R2 - R1 - R3 вместо того,чтобы идти напрямую VPC - R1 - R3. (L2 трафик всегда ходит через root во избежание петель) Поэтому рекомендуют использовать HSRP version 2(по умолчанию вкл 1 максимум 255 процессов,а во 2 их 4095) и использовать наилучший приоритет для того роутера, который сейчас в сети root primary за текущий VLAN. И хорошей практикой будет если номер VLAN будет совпадать с номером процесса HSRP. ( № HSRP = VLAN ) 3 Роутера в HSRP не имеет смысла держать,так как он всё равно будет в состоянии Listen и включиться только тогда,если active пропадет, standby займет его место , и только тогда он перейдет в состоянии standby.(речь идет о 3 роутере) Тоже самое будет касаться 4,5 ...n роутеров. SLA Бывает и другая ситуация ,когда не сам линк от R1 падает ,а устройство находящиеся за ним,к примеру SW2 упал link до R3. Проблему способен решить сервис SLA - Service Level Agreement. Суть его проста,он ping сервис до провайдера и если он падает ,то отрабатывает track. R1(config)# ip sla 1 - создаем зонд R1(config-ip-sla)# icmp-echo 215.215.215.2 source-interface e0/2 - посылаем icmp echo ping на 215.215.215.2 R1(config-ip-sla-echo)# frequency 10 - посылаем icmp echo ping с частотой каждые 10 секунд R1(config)# ip sla schedule 1 start-time now life forever - задаем расписание работы ip sla. В данном случае зон будет запущен прямо сейчас, при этом время окончания не задано (навсегда) R1(config)# track 1 ip sla 1 reachability - устанавливаем объект отслеживания на доступность того хоста, на который посылаем icmp echo ping R1(config)# ip route 0.0.0.0 0.0.0.0 2.2.2.2 track 1 - направляем трафик по этому маршруту если объект трекинга track 1 работает (хост пингуется) R1(config)# ip route 0.0.0.0 0.0.0.0 3.3.3.3 10 - если не пингуется, направляем трафик в интернет по другому маршруту (Внимание! Здесь важно задать именно плохую метрику, например 10, иначе будут работать оба маршрута! (балансировка)) R1# show track 1 - показать состояние объекта отслеживания VRRP Настройка VRRP не сильно отличается от HSRP . Настраивается он также как и HSRP, только вместо standby используется vrrp. Router(config-if)# vrrp 1 ip 192.168.1.1 - включение vrrp. Проще пройтись по отличиям ,чем заново описывать все команды. У VRRP тоже только 2 состояния Master и Backup(HSRP active и standby) Preempt включен по умолчанию (HSRP он отключен) При падении линка VRRP проводит выборы роутера(HSRP имеет запасной). Главного выбирают по IP адресу, когда проводят выборы. Поддержка Аутентификации в VRRP отсутствует (RFC отсутствует),но в Cisco она реализована(HSRP по умолчанию) VRRP по умолчанию hello таймер равен 1 секунде , dead таймер равен 3(у HSRP 3 и 10 соответственно) Виртуальный адрес может совпадать с адресом интерфейса(HSRP такой адрес не даст прописать) Использует Multicast HSRP равен 224.0.0.2 ( version 1) 224.0.0.102 (version 2) ,а VRRP 224.0.0.18 Может отслеживать только объекты , а HSRP и интерфейсы , и объекты.(смотри раздел tracking) Диагностика Router# show standby (vrrp or glbp) - показать общую информацию по протоколу группы FHRP Router# show standby brief - показать информацию по протоколу группы FHRP в виде таблицы
img
Машинное обучение - это метод анализа данных, который автоматизирует построение аналитической модели. Это отрасль искусственного интеллекта, основанная на идее, что системы могут обучаться на основе данных, выявлять закономерности и принимать решения с минимальным вмешательством человека. Эволюция машинного обучения Из-за новых вычислительных технологий машинное обучение сегодня отличается от машинного обучения в прошлом. Оно основывается на распознавании образов и теории, что компьютеры могут обучаться, не будучи запрограммированы для выполнения конкретных задач; исследователи, интересующиеся искусственным интеллектом, хотели посмотреть, смогут ли компьютеры обучаться, основываясь на базе данных. Итеративный аспект машинного обучения важен, так как модели, подвергающиеся воздействию новых данных, способны самостоятельно адаптироваться. Они учатся от предыдущих вычислений для получения надежных и воспроизводимых решений и результатов. Хотя многие алгоритмы машинного обучения существуют уже давно, способность автоматически применять сложные математические вычисления к объемным данным - снова и снова, все быстрее и быстрее - это новейшая разработка. Вот несколько широко разрекламированных примеров приложений машинного обучения, с которыми вы можете быть знакомы: Сильно раскрученная, самоуправляемая машина Google. Суть машинного обучения. Онлайн рекомендации, такие, как у Amazon и Netflix. Приложения машинного обучения для повседневной жизни. Знание того, что клиенты говорят о вас в соцсетях. Машинное обучение в сочетании с созданием лингвистических правил. Обнаружение мошенничества. Одно из наиболее очевидных, важных применений в современном мире. Почему машинное обучение важно? Возобновление интереса к машинному обучению обусловлено теми же факторами, которые сделали анализ данных и Байесовский анализ более популярными, чем когда-либо. Растущие объемы и разнообразие доступных данных, вычислительная обработка, которая является более дешевой и мощной; доступное хранилище для хранения данных - все эти аспекты означают, что можно быстро и автоматизировано производить модели, которые могут анализировать более объемные и сложные данные и обеспечивать быстрые и более точные результаты - даже на очень больших объемах. А благодаря созданию точных моделей у организации больше шансов определить выгодные возможности или избежать неизвестных рисков. Что необходимо для создания эффективных систем машинного обучения? Возможности подготовки данных. Алгоритмы - базовый и продвинутый. Автоматизация и итерационные процессы. Масштабируемость. Ансамблевое моделирование. Интересные факты В машинном обучении, цель называется - «ярлык». В статистике, цель называется «зависимой переменной». Переменная в статистике называется – «функция в машинном обучении». Преобразование в статистике называется – «создание функции в машинном обучении». Кто использует машинное обучение? Большинство отраслей промышленности, работающих с большими объемами данных признали ценность технологии машинного обучения. Подбирая идеи из этих данных - часто в режиме реального времени - организации способны более эффективно работать или получить преимущество перед конкурентами. Финансовые услуги Банки и другие предприятия финансовой индустрии используют технологию машинного обучения для двух ключевых целей: для выявления важных данных и предотвращения мошенничества. Они могут определить инвестиционные возможности или помочь инвесторам узнать, когда торговать. Интеллектуальный анализ данных может также идентифицировать клиентов с профилями высокого риска или использовать кибер-наблюдение, чтобы точно определить признаки мошенничества. Правительство Правительственные учреждения, такие как общественная безопасность и коммунальные службы, особенно нуждаются в машинном обучении, поскольку у них есть несколько источников данных, из которых можно получить информацию для полного понимания. Например, анализ датчика данных определяет пути повышения эффективности и экономии средств. Машинное обучение также может помочь обнаружить мошенничество и минимизировать кражу личных данных. Здравоохранение Машинное обучение является быстро развивающимся направлением в отрасли здравоохранения, благодаря появлению переносных устройств и датчиков, которые могут использовать данные для оценки состояния здоровья пациента в режиме реального времени. Эта технология также может помочь медицинским экспертам анализировать данные для выявления тенденций или «красных флажков», которые могут привести к улучшению диагностики и лечения. Розничная торговля Веб-сайты, рекомендующие товары, которые могут вам понравиться на основе предыдущих покупок, используют машинное обучение для анализа вашей истории покупок. Ритейлеры полагаются на машинное обучение для сбора данных, их анализа и использования для персонализации процесса совершения покупок, проведения маркетинговой кампании, оптимизации цен, планирования поставок товаров, а также для понимания потребностей клиентов. Нефть и газ Поиск новых источников энергии. Анализ минералов в почве. Прогнозирование неисправности датчика НПЗ. Оптимизация распределения нефти, чтобы сделать ее более эффективной и рентабельной. Количество вариантов использования машинного обучения для этой отрасли огромно - и продолжает расти. Транспорт Анализ данных для определения закономерностей и тенденций является ключевым для транспортной отрасли, которая полагается на повышение эффективности маршрутов и прогнозирование потенциальных проблем для повышения прибыльности. Анализ данных и аспекты моделирования машинного обучения являются важными инструментами для компаний доставки, общественного транспорта и других транспортных организаций. Каковы популярные методы машинного обучения? Двумя наиболее широко распространенными методами машинного обучения являются контролируемое обучение и неконтролируемое обучение, но существуют и другие методы машинного обучения. Вот обзор самых популярных типов. Контролируемое обучение Алгоритмы контролируемого обучения изучаются с использованием маркированных примеров, таких как ввод, в котором известен желаемый результат. Например, единица оборудования может иметь точки данных, помеченные как «F» (ошибка) или «R» (работа). Алгоритм обучения получает набор входных данных вместе с соответствующими правильными выходными данными, а алгоритм обучается путем сравнения своих фактических выходных данных с правильными выходными данными, чтобы найти ошибки. Затем он соответствующим образом модифицирует модель. С помощью таких методов, как классификация, регрессия, прогнозирование и повышение градиента, контролируемое обучение использует шаблоны для прогнозирования значений метки на дополнительных немаркированных данных. Контролируемое обучение обычно используется в приложениях, где исторические данные предсказывают вероятные будущие события. Например, он может предвидеть, когда транзакции по кредитным картам могут быть мошенническими или какой клиент страхования может подать иск. Полуконтролируемое обучение Полуконтролируемое обучение используется для тех же приложений, что и контролируемое обучение. Но для обучения оно использует как помеченные, так и непомеченные данные, как правило, это небольшой объем помеченных данных с большим количеством немеченых данных (поскольку немеченые данные дешевле и требуют меньше усилий для их получения). Этот тип обучения может использоваться с такими методами, как классификация, регрессия и прогнозирование. Полуконтролируемое обучение полезно, когда стоимость, связанная с маркировкой, слишком высока, чтобы учесть полностью помеченный процесс обучения. Ранние примеры этого включают идентификацию лица человека по веб-камере. Неконтролируемое обучение Неконтролируемое обучение используется в отношении данных, которые не имеют исторических меток. Система не сказала «правильный ответ». Алгоритм должен выяснить, что показывается. Цель состоит в том, чтобы исследовать данные и найти некоторую структуру внутри. Неуправляемое обучение хорошо работает на транзакционных данных. Например, он может идентифицировать сегменты клиентов со схожими признаками, которые затем могут обрабатываться аналогично в маркетинговых кампаниях. Или он может найти основные атрибуты, которые отделяют сегменты клиентов друг от друга. Популярные методы включают самоорганизующиеся таблицы, отображение ближайших соседей, кластеризацию k-средств и разложение по сингулярным числам. Эти алгоритмы также используются для сегментирования текстовых тем, рекомендации элементов и резко отличающихся значений данных. Усиленное обучение Усиленное обучение часто используется для робототехники, игр и навигации. Благодаря обучению с подкреплением алгоритм с помощью проб и ошибок обнаруживает, какие действия приносят наибольшее вознаграждение. Этот тип обучения состоит из трех основных компонентов: агент (учащийся или лицо, принимающее решения), среда (все, с чем взаимодействует агент) и действия (что может делать агент). Цель состоит в том, чтобы агент выбирал действия, которые максимизируют ожидаемое вознаграждение в течение заданного периода времени. Агент достигнет цели намного быстрее, следуя хорошей политике. Таким образом, цель усиленного обучения состоит в том, чтобы изучить лучшую политику. Каковы различия между интеллектуальным анализом данных, машинным обучением и глубоким обучением? Хотя все эти методы имеют одну и ту же цель - извлекать идеи, шаблоны и зависимости, которые можно использовать для принятия решений - у них разные подходы и возможности. Сбор данных (Data Mining) Интеллектуальный анализ данных можно рассматривать как набор множества различных методов для извлечения информации из данных. Он может включать традиционные статистические методы и машинное обучение. Интеллектуальный анализ применяет методы из разных областей для выявления ранее неизвестных шаблонов из данных. Он может включать в себя статистические алгоритмы, машинное обучение, анализ текста, анализ временных рядов и другие области аналитики. Интеллектуальный анализ данных также включает изучение, практику хранения и обработки данных. Машинное обучение Основное отличие машинного обучения заключается в том, что, как и в статистических моделях, цель состоит в том, чтобы понять структуру данных - подогнать теоретические распределения к хорошо понятным данным. Таким образом, под статистическими моделями стоит теория, которая математически доказана, но для этого необходимо, чтобы данные также соответствовали определенным строгим гипотезам. Машинное обучение развивалось на основе способности использовать компьютеры для проверки данных на предмет структуры, даже если у нас нет теории о том, как эта структура выглядит. Испытанием модели машинного обучения является ошибка проверки новых данных, а не теоретическое испытание, которое подтверждает нулевую гипотезу. Поскольку машинное обучение часто использует итеративный подход для изучения данных, обучение может быть легко автоматизировано. Передача через данные проходит, пока не будет найден надежный шаблон. Глубокое изучение (Deep learning) Глубокое обучение сочетает в себе достижения в области вычислительной мощности и специальных типов нейронных сетей для изучения сложных моделей больших объемов данных. В настоящее время методы глубокого обучения подходят для идентификации объектов в изображениях и слов в звуках. В настоящее время исследователи стремятся применить эти успехи в распознавании образов для решения более сложных задач, таких как автоматический перевод языка, медицинские диагнозы и множество других важных социальных и деловых проблем. Как это работает? Чтобы получить максимальную отдачу от машинного обучения, вы должны знать, как сочетать лучшие алгоритмы с подходящими инструментами и процессами. Алгоритмы: графические пользовательские интерфейсы помогают создавать модели машинного обучения и реализовывать итеративный процесс машинного обучения. Алгоритмы машинного обучения включают в себя: Нейронные сети Деревья решений Случайные леса Ассоциации и обнаружение последовательности Градиент повышения и расфасовки Опорные векторные машины Отображение ближайшего соседа K-средства кластеризации Самоорганизующиеся карты Методы локальной оптимизации поиска Максимальное ожидание Многомерные адаптивные регрессионные сплайны Байесовские сети Оценка плотности ядра Анализ главных компонентов Сингулярное разложение Смешанные Гауссовские модели Последовательное сопроводительное построение правил Инструменты и процессы: Как мы уже знаем, это не просто алгоритмы. В конечном счете, секрет получения максимальной отдачи от ваших объемных данных заключается в объединении лучших алгоритмов для поставленной задачи с: Комплексным качеством данных и их управлением GUI для построения моделей и процессов Интерактивным исследованием данных и визуализацией результатов модели Сравнением различных моделей машинного обучения для быстрого определения лучшей Автоматизированной оценкой группы для выявления лучших исполнителей Простым развертыванием модели, что позволяет быстро получать воспроизводимые и надежные результаты Интегрированной комплексной платформой для автоматизации процесса принятия решений
img
Эту статью нам прислал один из наших читателей – речь пойдет о настройке SIP – транка в от IP – АТС Asterisk к провайдеру Ростелеком. Инструкция подойдет для связки с в рамках услуги «Новая телефония». Настройка Подключаемся к консоли сервера по SSH и в файле /etc/asterisk/sip.conf указываем следующие параметры: register => (логин:пароль@имя домена/логин) [rtk] dtmfmode = rfc2833 type = friend trunkname = rtk disallow = all allow = alaw:20 allow = ulaw:20 host = имя домена nat = force_rport,comedia insecure = invite,port (данный параметр необходим для входящих вызовов) defaultuser =логин fromuser =логин username =логин secret =пароль fromdomain=имя домена canreinvite=no context = контекст в extensions.conf qualify = 300 registersip=yes В более старших версиях параметр nat нужно указывать следующим образом: nat=no или nat=yes
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59