По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Перед тем как начать чтение этой статьи, советуем ознакомиться с материалом про расчет пути по алгоритму Bellman - ford. Алгоритм диффузного обновления (Diffusing Update Algorithm -DUAL) - один из двух обсуждаемых здесь алгоритмов, изначально предназначенных для реализации в распределенной сети. Он уникален тем, что также удаляет информацию о достижимости и топологии, содержащуюся в конечном автомате алгоритма. Другие обсуждаемые здесь алгоритмы оставляют удаление информации на усмотрение реализации протокола, а не рассматривают этот аспект работы алгоритма внутри самого алгоритма. К 1993 году Bellman-Ford и Dijkstra были реализованы как распределенные алгоритмы в нескольких протоколах маршрутизации. Опыт, полученный в результате этих ранних реализаций и развертываний, привел ко "второй волне" исследований и размышлений о проблеме маршрутизации в сетях с коммутацией пакетов, что привело к появлению вектора пути и DUAL. Поскольку DUAL разработан как распределенный алгоритм, лучше всего описать его работу в сети. Для этой цели используются рисунки 8 и 9. Чтобы объяснить DUAL, в этом примере будет прослеживаться поток A, изучающего три пункта назначения, а затем обрабатываются изменения в состоянии доступности для этих же пунктов назначения. В первом примере будет рассмотрен случай, когда есть альтернативный путь, но нет downstream neighbor, второй рассмотрит случай, когда есть альтернативный путь и downstream neighbor. На рисунке 8 изучение D с точки зрения A: A узнает два пути к D: Через H стоимостью 3. Через C стоимостью 4. A не узнает путь через B, потому что B использует A в качестве своего преемника: A - лучший путь B для достижения D. Поскольку B использует путь через A для достижения D (пункта назначения), он не будет анонсировать маршрут, который он знает о D (через C) к A. B выполнит split horizon своего объявления D на A, чтобы предотвратить образование возможных петель пересылки. A сравнивает доступные пути и выбирает кратчайший путь без петель: Путь через H помечен как преемник. Возможное расстояние устанавливается равным стоимости кратчайшего пути, равной 3. A проверяет оставшиеся пути, чтобы определить, являются ли какие-либо из них downstream neighbors: Стоимость C составляет 3. A знает это, потому что C объявляет маршрут к D со своей локальной метрикой, равной 3. A сохраняет локальную метрику C в своей таблице топологии. Следовательно, A знает локальную стоимость в C и локальную стоимость в A. 3 (стоимость в C) = 3 (стоимость в A), поэтому этот маршрут может быть петлей, следовательно, C не удовлетворяет условию выполнимости. C не помечен как downstream neighbors. Downstream neighbors в DUAL называются возможными преемниками. Предположим, что канал [A, H] не работает. DUAL не полагается на периодические обновления, поэтому A не может просто ждать другого обновления с достоверной информацией. Скорее A должен активно следовать альтернативному пути. Таким образом, это диффузный процесс обнаружения альтернативного пути. Если канал [A, H] не работает, учитывая только D: A проверяет свою локальную таблицу на предмет возможных преемников (Downstream neighbors). Возможных преемников нет, поэтому A должен найти альтернативный путь без петель к D (если он существует). A отправляет запрос каждому соседу, чтобы определить, есть ли какой-либо альтернативный путь без петель к D. В C: Преемником C является E (не A, от которого он получил запрос). Стоимость E ниже, чем стоимость A для D. Следовательно, путь C не является петлей. C отвечает со своей текущей метрикой 3 на A. В B: А - нынешний преемник Б. Посредством запроса B теперь обнаруживает, что его лучший путь к D потерпел неудачу, и он также должен найти альтернативный путь. Обработка B здесь не расписывается, а предоставляется выполнить самостоятельно. B отвечает A, что у него нет альтернативного пути (отвечает бесконечной метрикой). A получает эти ответы: Путь через C - единственный доступный, его стоимость 4. A отмечает путь через C как его преемника. Других путей к D нет. Следовательно, нет подходящего преемника (downstream neighbor). На рисунке 9 пункт назначения (D) был перемещен с H на E. Это будет использоваться во втором примере. В этом примере есть возможный преемник (downstream neighbor). Изучение D с точки зрения A: A узнает два пути к D: Через H стоимостью 4. Через C стоимостью 3. A не узнает никакого пути через B: У B есть два пути к D. Через C и A стоимостью 4. В этом случае B использует как A, так и C. B выполнит split horizon свого объявления D на A, потому что A помечен как преемник. A сравнивает доступные пути и выбирает кратчайший путь без петель: Путь через C отмечен как преемник. Возможное расстояние устанавливается равным стоимости кратчайшего пути, равной 3. A проверяет оставшиеся пути, чтобы определить, являются ли какие-либо из них downstream neighbors: Стоимость H составляет 2. 2 (стоимость в H) = 3 (стоимость в A), поэтому этот маршрут не может быть петлей. Следовательно, H удовлетворяет условию выполнимости. H отмечен как возможный преемник (downstream neighbors). Если канал [A, C] не работает, просто рассматривая A: A проверит свою таблицу локальной топологии на предмет возможного преемника. Возможный преемник существует через H. A переключает свою локальную таблицу на H как лучший путь. Распространяющееся обновление не запускалось, поэтому пути не были проверены или пересчитано. Следовательно, допустимое расстояние изменить нельзя. Он остается на 3. A отправляет обновление своим соседям, отмечая, что его стоимость достижения D изменилась с 3 до 4. Как вы можете видеть, обработка, когда существует возможный преемник, намного быстрее и проще, чем без него. В сетях, где был развернут протокол маршрутизации с использованием DUAL (в частности, EIGRP), одной из основных целей проектирования будет ограничение объема любых запросов, генерируемых в случае отсутствия возможного преемника. Область запроса является основным определяющим фактором того, как быстро завершается двойной алгоритм и, следовательно, как быстро сходится сеть. На рисунке 10 показан базовый законченный автомат DUAL. Вещи, входящие в route gets worse (ухудшение маршрута), могут представлять собой: Отказ подключенного канала или соседа Получение обновления для маршрута с более высокой метрикой Получение запроса от текущего преемника Получение нового маршрута от соседа Обнаружен новый сосед, а также маршруты, по которым он может добраться Получение всех запросов, отправленных соседям, когда маршрут ухудшается
img
Ищете возможность анализировать сетевой трафик/отправлять его на систему записи телефонных разговоров? Изи. Коммутаторы Cisco (да и многие другие) дают возможность копировать пакеты с определенного порта или VLAN и отправлять эти данные на другой порт для последующего анализа (Wireshark, например). Кстати, этот функционал полезен при использовании IDS (Intrusion Detection System) систем в целях безопасности. Мы уже рассказывали теоретические основы SPAN/RSPAN, поэтому, сегодняшняя статья будет посвящена практике настройке. Про настройку SPAN В рамках обычной SPAN сессии захват (копирование) сетевого трафика происходит с порта источника (source port) и отправляется на порт назначения (destination port). Обратите внимание на пример ниже: мы сделаем SPAN – сессию с порта fa 0/1 и отправим данные на порт fa 0/5: Важно! SPAN – сессия может работать только в рамках одного коммутатора (одного устройства). Конфигурация: switch# configure terminal switch(config)# monitor session 1 source interface fa0/1 switch(config)# monitor session 1 destination interface fa0/5 Просто, не правда ли? В рамках данной конфигурации весь трафик с порта fa 0/1 будет скопирован на порт fa 0/5. Интереснее: пример RSPAN Идем вперед. Более продвинутая реализация зеркалирования трафика это RSPAN (Remote SPAN). Эта фича позволяет вам зеркалировать трафик между различными устройствами (коммутаторами) по L2 через транковые порты. Копия трафика будет отправляться в удаленный VLAN между коммутаторами, пока не будет принята на коммутаторе назначения. На самом деле, это легко. Давайте разберемся на примере: как показано на рисунке, мы хотим копировать трафик с коммутатора №1 (порт fa 0/1) и отправлять трафик на коммутатор №2 (порт fa 0/5). В примере показано прямое транковое подключение между коммутаторами по L2. Если в вашей сети имеется множество коммутаторов между устройствами источника и назначения – не проблема. Конфигурация: //Настройки на коммутаторе источнике switch_source# config term switch_source(config)# vlan 100 //Создаем Remote VLAN на первом коммутаторе (в который будем передавать данные с source порта) switch_source(config-vlan)# remote span switch_source(config-vlan)# exit switch_source(config)# monitor session 10 source interface fa0/1 switch_source(config)# monitor session 10 destination remote vlan 100 //Настройки на коммутаторе получателе switch_remote# config term switch_remote(config)# vlan 100 //Создаем Remote VLAN на втором (удаленном) коммутаторе (в который будем передавать данные с source влана уже на порт назначения) switch_remote(config-vlan)# remote span switch_remote(config-vlan)# exit switch_remote(config)# monitor session 11 source remote vlan 100 switch_remote(config)# monitor session 11 destination interface fa0/5 Таким образом, весь трафик с интерфейса fa 0/1 на локальном коммутаторе (источнике) будет отправлен в vlan 100, и, когда коммутатор получатель (remote) получит данные на 100 VLAN он отправит их на порт назначения fa 0/5. Такие дела. Party Hard: разбираемся с ERSPAN ERSPAN (Encapsulated Remote Switched Port Analyzer) - фича, которая используется для копирование трафика в L3 сетях. В основе работы механизма лежит GRE инкапсуляция. Как показано ниже, между коммутатором источником и коммутатором получателем устанавливается GRE – туннель (между IP – адресами машин). Опять же, мы хотим отправить трафик с порт fa 0/1 на порт fa 0/5. Конфигурация: //Настройки на коммутаторе источнике switch_source(config)# monitor session 1 type erspan-source switch_source(config-mon-erspan-src)# source interface fa0/1 switch_source(config-mon-erspan-src)# destination switch_source(config-mon-erspan-src-dst)# erspan-id 111 //Это значение должно быть одинаковым на всех устройствах switch_source(config-mon-erspan-src-dst)# ip address 192.168.1.5 //IP - адрес коммутатора получателя switch_source(config-mon-erspan-src-dst)# origin ip address 192.168.2.5 //IP - адрес коммутатора отправителя (источника) //Настройки на коммутаторе получателе switch_remote(config)# monitor session 1 type erspan-destination switch_remote(config-mon-erspan-dst)# destination interface fa0/5 switch_remote(config-mon-erspan-dst)# source switch_remote(config-mon-erspan-dst-src)# erspan-id 111 switch_remote(config-mon-erspan-dst-src)# ip address 192.168.1.5 //IP - адрес коммутатора получателя (назначения) Траблшутинг Мониторинг трафика в указанном VLAN: monitor session 1 source vlan 13 Мониторинг входящего или только исходящего трафика: monitor session 1 source vlan 13 rx/tx Посмотреть конфигурацию сессии зеркалирования: show monitor session 1
img
Камрад! Вот тебе история о том, как за 3 минуты ввести компьютер на базе операционной системы Windows 10 в домен. Поехали! Кстати, а если ты передумаешь, то у нас есть статья про вывод машины на базе Windows 10 из домена :) Настройка Первое, что необходимо сделать – открыть редактор «Свойств системы». Для этого, откройте меню Пуск и дайте команду: sysdm.cpl В открывшемся окне делаем, как показано на скриншоте: Нажимаем на кнопку Изменить; В открывшемся окне, переключаем селектор на «Является членом домена» и указываем ваш домен. Например, mydomain.local; Нажимаем OK; Далее, инструмент попросит указать учетную запись, через которую мы будем подключаться к контроллеру домена. Укажите ее: После ввода, нажмите ОК. Если все хорошо, то вы увидите следующее сообщение: Отлично, теперь производим перезагрузку компьютера. После того, как система прогрузится, переходим в свойства компьютера. И наблюдаем прекрасную картину – появился домен:
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59