По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной статье будет описан процесс настройки вашей АТС Asterisk с провайдером Zadarma. Настройка с помощью файлов конфигурации Asterisk Важный момент - у вас уже должны быть логин и пароль для данного провайдера, получить которые можно на сайте. Для примера будут указаны следующие данные: 1234567 - ваш SIP - номер, полученный при регистрации, ****** - ваш пароль и 321 - номер экстеншена. Рассмотрим самый стандартный вариант, при котором исходящие звонки с вышеуказанного внутреннего номера (экстеншена) маршрутизируются через SIP - транк zadarma-trunk. Для начала настройки необходимо отредактировать файл sip.conf следующим образом: [general] srvlookup=yes [zadarma-trunk] host=sip.zadarma.com insecure=invite,port type=friend fromdomain=sip.zadarma.com disallow=allallow=alaw&ulaw dtmfmode=autosecret=password defaultuser=1234567 trunkname=zadarma-trunk fromuser=1234567 callbackextension=zadarma-trunk context=zadarma-in qualify=400 directmedia=no [321] secret=password host=dynamic type=friend context=zadarma-out Настройки маршрутизации производятся в файле extensions.conf следующим образом: [zadarma-in] exten => 1234567,1, Dial(SIP/321) [zadarma-out] exten => _XXX,1,Dial(SIP/${EXTEN}) exten => _XXX.,1,Dial(SIP/${EXTEN}@zadarma-trunk) Для контекста [zadarma-in] все входящие вызовы направляются на экстеншен 321, и для [zadarma-out] возможны два варианта: если в набираемом номере 3 цифры, то вызов пойдет на один из экстеншенов, настроенных на вашей АТС, если же 4 и больше - вызов уйдет на транк zadarma-trunk. В случае, если ваша АТС находится не за маршрутизатором, а имеет публичный IP-адрес, то входящие вызовы можно принимать по следующей схеме, с использованием SIP URI. К примеру, 12039485767 - ваш DID номер подключенный к Zadarma, а 200.132.13.43 - адрес вашего Asterisk. Для этого нужно в личном кабинете в поле Настройки-Прямой телефонный номер нужно указать маршрутизацию с прямого DID номера на внешний сервер (SIP URI) в формате 12039485767@200.132.13.43 и отредактировать sip.conf следующим образом: [zadarma] host=sipde.zadarma.com type=friend insecure=port,invite context=zadarma-in disallow=all allow=alaw&ulaw dtmfmode = auto directmedia=no [zadarma2] host=siplv.zadarma.com type=friend insecure=port,invite context=zadarma-in disallow=all allow=alaw&ulaw dtmfmode = auto directmedia=no [zadarma3] host=sipfr.zadarma.com type=friend insecure=port,invite context=zadarma-in disallow=all allow=alaw&ulaw dtmfmode = auto directmedia=no Указываем исходящий маршрут в файле extensions.conf [zadarma-in] extended => 12039485767,1,Dial(SIP/321) Далее будет рассмотрена настройка транка для FreePBX 13 версии. Настройка с помощью FreePBX Важный момент, перед настройкой транка необходимо включить функцию SRV Lookup. Для этого необходимо пройти по пути Settings → Asterisk SIP Settings → Chan SIP Settings и для опции Enable SRV Lookup выбрать опцию Yes. Далее происходит уже знакомый процесс настройки транка – переходим во вкладку Connectivity → Trunks. Необходимо нажать на кнопку + Add Trunk и добавить chan_sip транк Присваиваем имя транку – в данном случае это «Zadarma_test» Далее необходимо перейти во вкладку sip Settings и указать настройки для входящей и исходящей связи (вкладки Outgoing и Incoming) Для удобства копирования, приведу настройки SIP - транка и строки регистрации в текстовом виде: host=sip.zadarma.com insecure=invite,port type=friend fromdomain=sip.zadarma.com disallow=all allow=alaw&ulaw dtmfmode=auto secret=****** defaultuser=1234567 fromuser=1234567 qualify=400 directmedia=no 1234567:******@sip.zadarma.com/1234567 Далее нужно нажать на Submit и Apply Config. Переходим к настройке входящего маршрута Маршрутизация Во вкладке Connectivity → Inbound Routes по уже знакомому способу создаём входящий маршрут (кнопка + Add Inbound Route), присваиваем описание и указываем номер. Далее нажимаем Submit и переходим к настройке исходящего маршрута: переходим по пути Connectivity → Outbound Route, создаём новый исходящий маршрут таким же образом как и входящий и указываем следующие параметры – имя маршрута, CID маршрута и используемый транк (тот, что был настроен в начале всего процесса.) Последним шагом является настройка Dial Patterns – переходим в одноименную вкладку и после поля префикс необходимо поставить одну единственную точку – иначе не будет возможности совершать исходящие вызовы. После этого необходимо нажать Submit и Apply Config. На этом настройка заканчивается.
img
В начале 80-ых годов XX века цена 1 гигабайта памяти стоило полмиллиона долларов! А сегодня самый бюджетный смартфон за 70-100 долларов имеет память равным минимум 8-ми гигабайтам. Но в то время еще никто даже не предполагал, что в облаках в недалёком будущем можно будет хранить свои данные и не нужно будет везде тащить с собой дискеты, CD и DVD диски, флеш-карты и так далее и тому подобное. В этом материале поговорим о продуктах различных компаний, которые предоставляют услугу облачного хранилища. Для начала облако это те же самые компьютеры, а точнее сервера в огромных дата-центрах, размещенных в разных уголках планеты. Как устроены эти центры обработки данных тема совсем другая. Но принцип работы схож с вашим домашним компьютером. Вы регистрируетесь на сайте компании и для вас создается учётная запись с выделенным по умолчанию объемом на дисках тех же серверов. Но в отличии от вашего компьютера, в этих ЦОД-ах все ваши данные резервируются и надежно (иногда не очень) охраняются разными системами безопасности поставщика услуг. Google Drive Сегодня на рынке довольно много известных и не очень компаний, предоставляющих данный вид услуги. Одним из наиболее популярных является Google Drive. Компания-гигант при регистрации выделяет каждому пользователю целых 15 гигабайтов памяти. Некоторое время назад Google раз в год за проверку настроек безопасности аккаунта дарил по два гигабайта дополнительной памяти. Но сейчас эта тенденция не наблюдается, но есть возможность ежемесячной или годовой подписки. Сервис даёт возможность отправлять файлы размером, превышающим 25 мб лимит на размер вложения в письме. Для этого файл загружается в облако и генерируется ссылка, которая отправляется получателю. На отправленные файлы можно давать разные уровни доступа. Чтобы отправить файл расположенные на Google Drive в окне создания письма кликаем на пиктограмму Google Drive. Выбираем нужный файл и нажимаем Вставить (Insert). И при отправке письма выйдет окно с предложением поделиться файлом и задать нужные права. На сайте также можно скачать специальный клиент, который позволяет, не заходя на сайт загружать файлы в облако. Единственный минус в том, что эти файлы занимают место и на вашем диске. Правда, можно выбрать какие папки синхронизировать, тем самым сэкономить место на локальном диске. Для этого в настройках клиента указывается какие папки в облаке следует синхронизировать с компьютером. Если не выбрать ничего, синхронизируется только файлы в корневой директории. Клиент даёт возможность, не заходя в веб-интерфейс, прямо из проводника поделиться файлом. Для этого кликаем правой кнопкой на файле, из контекстного меню выбираем Google Drive-> Share. Затем либо прописываем e-mail адресата, либо генерируем ссылку на файл. Имеется также версия для IOS и Android, что в свою очередь очень облегчает доступ к данным в любом месте, где есть достому подобное к Интернету. Яндекс. Диск Второй не менее популярный сервис облачного хранилища является продукт Яндекса Яндекс. Диск. Чтобы пользоваться данным сервисом необходимо иметь аккаунт на Яндексе. При регистрации пользователю выделяется 10 гигабайтов места. Также имеется возможность оформлять подписку на больше количество памяти. Как и предыдущий поставщик, Яндекс также предлагает настольную версию сервиса. В отличии от Google Drive, здесь просто хранятся ссылки на файлы. При желании можно сохранить на диск кликнув правой кнопкой на нужном файле. Минус не будет доступа к файлам в случае отсутствия сети. Плюс клиент имеет встроенный редактор скриншотов, который открывается при нажатии клавиши PrtScr. Скриншот затем сохраняется в папке с соответствующим названием и автоматом выгружается в облако. По умолчанию файлы сохраняются в формате PNG, но в настройках можно это поменять. Как и клиент Google Drive, Яндекс. Диск тоже позволяет из проводника делиться нужными файлами. Также имеется версия клиента для смартфонов. DropBox Следующим не менее известным, но самым скупым является DropBox. Сервис изначально предлагает всего 2 Гб места, что по нынешним меркам довольно-таки скудный показатель. Но также имеется возможность подписки. Сервис предоставляет клиент для компьютеров и смартфонов, где можно создавать папки, упорядочивать файлы и делиться необходимыми файлами. Fex Еще одним относительно новым сервисом облачного хранилища является Fex. При регистрации сервис в целях тестирования предлагает ни мало, ни много 50 гигабайтов дискового пространства. Минусом данного поставщика является лимит на время хранения файла. Файлы автоматически удаляются через неделю. Поэтому пользоваться им бесплатно для долговременного хранения файлов не целесообразно. Mega.NZ Последним и самым оптимальным на наш взгляд сервисом, предоставляющим возможность бесплатно хранить данные является Mega.nz. Сервис бесплатно предоставляет 50 гигабайтов пространства. Но для этого нужно выполнить всех шаги по регистрации и настройке. Как и все остальные сервисы Mega.NZ тоже имеет клиент, который можно установить на компьютерах или смартфонах. И веб-интерфейс, и настольный клиент даёт возможность загружать файлы в облако и делиться ими. Кроме всего прочего есть возможность подписки, что позволяет увеличивать объем места и лимит на трансфер файлов. На всех указанные сервисах кроме Fex можно настроить двухфакторную аутентификацию, что в наши дни достаточно важно. Можно завести аккаунты на разных сервисах и распределить данные по ним. Есть ещё не мало сервисов, которые мы не затронули в данной статье. Это Облако.Mail.ru, OneDrive продукт Майкрософт и так далее. А каким из указанных пользоваться это уже ваш выбор. Можно перепробовать все и выбрать какой-то один и оформить годовую подписку.
img
В статье рассматриваются примеры протоколов, обеспечивающих Interlayer Discovery и назначение адресов. Первую часть статьи про Interlayer Discovery можно прочитать тут. Domain Name System DNS сопоставляет между собой человекочитаемые символьные строки, такие как имя service1. exemple, используемый на рисунке 1, для IP-адресов. На рисунке 3 показана основная работа системы DNS. На рисунке 3, предполагая, что нет никаких кэшей любого вида (таким образом, весь процесс проиллюстрирован): Хост A пытается подключиться к www.service1.example. Операционная система хоста проверяет свою локальную конфигурацию на предмет адреса DNS-сервера, который она должна запросить, чтобы определить, где расположена эта служба, и находит адрес рекурсивного сервера. Приложение DNS операционной системы хоста отправляет DNS-запрос на этот адрес. Рекурсивный сервер получает этот запрос и - при отсутствии кешей - проверяет доменное имя, для которого запрашивается адрес. Рекурсивный сервер отмечает, что правая часть имени домена именуется example, поэтому он спрашивает корневой сервер, где найти информацию о домене example. Корневой сервер возвращает адрес сервера, содержащий информацию о домене верхнего уровня (TLD) example. Рекурсивный сервер теперь запрашивает информацию о том, с каким сервером следует связаться по поводу service1.example. Рекурсивный сервер проходит через доменное имя по одному разделу за раз, используя информацию, обнаруженную в разделе имени справа, чтобы определить, какой сервер следует запросить об информации слева. Этот процесс называется рекурсией через доменное имя; следовательно, сервер называется рекурсивным сервером. Сервер TLD возвращает адрес полномочного сервера для service1.example. Если информация о местонахождении службы была кэширована из предыдущего запроса, она возвращается как неавторизованный ответ; если фактический сервер настроен для хранения информации об ответах домена, его ответ является авторитетным. Рекурсивный сервер запрашивает информацию о www.service1.example у полномочного сервера. Авторитетный сервер отвечает IP-адресом сервера B. Рекурсивный сервер теперь отвечает хосту A, сообщая правильную информацию для доступа к запрошенной службе. Хост A связывается с сервером, на котором работает www.service1.example, по IP-адресу 2001:db8:3e8:100::1. Этот процесс может показаться очень затяжным; например, почему бы просто не сохранить всю информацию на корневом сервере, чтобы сократить количество шагов? Однако это нарушит основную идею DNS, которая заключается в том, чтобы держать информацию о каждом домене под контролем владельца домена в максимально возможной степени. Кроме того, это сделало бы создание и обслуживание корневых серверов очень дорогими, поскольку они должны были бы иметь возможность хранить миллионы записей и отвечать на сотни миллионов запросов информации DNS каждый день. Разделение информации позволяет каждому владельцу контролировать свои данные и позволяет масштабировать систему DNS. Обычно информация, возвращаемая в процессе запроса DNS, кэшируется каждым сервером на этом пути, поэтому сопоставление не нужно запрашивать каждый раз, когда хосту необходимо достичь нового сервера. Как обслуживаются эти таблицы DNS? Обычно это ручная работа владельцев доменов и доменов верхнего уровня, а также пограничных провайдеров по всему миру. DNS не определяет автоматически имя каждого объекта, подключенного к сети, и адрес каждого из них. DNS объединяет базу данных, обслуживаемую вручную, с распределением работы между людьми, с протоколом, используемым для запроса базы данных; следовательно, DNS попадает в базу данных сопоставления с классом протоколов решений. Как хост узнает, какой DNS-сервер запрашивать? Эта информация либо настраивается вручную, либо изучается с помощью протокола обнаружения, такого как IPv6 ND или DHCP. DHCP Когда хост (или какое-либо другое устройство) впервые подключается к сети, как он узнает, какой IPv6-адрес (или набор IPv6-адресов) назначить локальному интерфейсу? Одним из решений этой проблемы является отправка хостом запроса в какую-либо базу данных, чтобы определить, какие адреса он должен использовать, например DHCPv6. Чтобы понять DHCPv6, важно начать с концепции link local address в IPv6. При обсуждении размера адресного пространства IPv6, fe80:: / 10 был назван зарезервированным для link local address. Чтобы сформировать link local address, устройство с IPv6 объединяет префикс fe80:: с MAC (или физическим) адресом, который часто форматируется как адрес EUI-48, а иногда как адрес EUI-64. Например: Устройство имеет интерфейс с адресом EUI-48 01-23-45-67-89-ab. Этот интерфейс подключен к сети IPv6. Устройство может назначить fe80 :: 123: 4567: 89ab в качестве link local address и использовать этот адрес для связи с другими устройствами только в этом сегменте. Это пример вычисления одного идентификатора из другого. После того, как link local address сформирован, DHCP6 является одним из методов, который можно использовать для получения уникального адреса в сети (или глобально, в зависимости от конфигурации сети). DHCPv6 использует User Datagram Protocol (UDP) на транспортном уровне. Рисунок 4 иллюстрирует это. Хост, который только что подключился к сети, A, отправляет сообщение с запросом. Это сообщение поступает с link local address и отправляется на multicast address ff02 :: 1: 2, порты UDP 547 (для сервера) и 546 (для клиента), поэтому каждое устройство, подключенное к одному и тому же физическому проводу, получит сообщение. Это сообщение будет включать уникальный идентификатор DHCP (DUID), который формирует клиент и использует сервер, чтобы обеспечить постоянную связь с одним и тем же устройством. B и C, оба из которых настроены для работы в качестве серверов DHCPv6, отвечают рекламным сообщением. Это сообщение является одноадресным пакетом, направленным самому A с использованием link local address, из которого A отправляет запрашиваемое сообщение. Хост A выбирает один из двух серверов, с которого запрашивать адрес. Хост отправляет запрос на multicast address ff02 :: 1: 2, прося B предоставить ему адрес (или пул адресов), информацию о том, какой DNS-сервер использовать, и т. д. Сервер, работающий на B, затем отвечает ответом на изначально сформированный link local address A; это подтверждает, что B выделил ресурсы из своего локального пула, и позволяет A начать их использование. Что произойдет, если ни одно устройство в сегменте не настроено как сервер DHCPv6? Например, на рисунке 4, что, если D - единственный доступный сервер DHCPv6, потому что DHCPv6 не работает на B или C? В этом случае маршрутизатор (или даже какой-либо другой хост или устройство) может действовать как ретранслятор DHCPv6. Пакеты DHCPv6, которые передает A, будут приняты ретранслятором, инкапсулированы и переданы на сервер DHCPv6 для обработки. Примечание. Описанный здесь процесс называется DHCP с отслеживанием состояния и обычно запускается, когда в объявлении маршрутизатора установлен бит Managed. DHCPv6 может также работать с SLAAC, для предоставления информации, которую SLAAC не предоставляет в режиме DHCPv6 без сохранения состояния. Этот режим обычно используется, когда в объявлении маршрутизатора установлен бит Other. В тех случаях, когда сетевой администратор знает, что все адреса IPv6 будут настроены через DHCPv6, и только один сервер DHCPv6 будет доступен в каждом сегменте, сообщения с объявлением и запросом можно пропустить, включив быстрое принятие DHCPv6. А теперь почитайте про Address Resolution Protocol - протокол разрешения IPv4-адресов
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59