По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной статье будет рассмотрена настройка и подключение телефонного аппарата к АТС OpenScape Voice на примере телефонных аппаратов семейства Siemens OpenStage, работающих по протоколу SIP. Для подключения нового абонента к системе требуются: Префикс номера (Office Code) - префикс телефонного номера в системе, по которому осуществляется маршрутизация вызовов; Полный внутренний номер (Home Directory Number) - состоит из префикса номера и внутреннего номера; Внутренний номерной план (Private Numbering Plan) - определяет правила маршрутизации для группы абонентов; Настойка параметров абонента (Subscriber); Для конфигурации используется система управления - Common Management Portal. Она представлена в виде веб-портала. Создание префикса номера Для этого необходимо перейти в раздел Configuration → OpenScape Voice → Global Translation and Routing → Directory Numbers → Office Codes: Номер телефона состоит из короткого внутреннего номера (Extension) и префикса - локального кода офиса (Local Office Code). Нажимаем на кнопку Add… и поле Local Office Code указываем префикс, а ниже указываем диапазон внутренних номеров в полях Directory Number Start и Directory Number End. После нажимаем Save. Создание внутреннего номера Переходим в раздел Configuration → OpenScape Voice → Global Translation and Routing → Directory Numbers → Home Directory Numbers: Нажимаем Add… и в поле Office Code указываем созданный префикс, а в полях Directory Number Start и Directory Number End указываем начальный и конченый диапазон номеров. Если необходимо добавить только один номер, то его нужно указать в поле Directory Number Start, а поле Directory Number End оставить пустым. Нажимаем Save, и номер появляется в списке. Создание внутреннего номерного плана Для этого в разделе Configuration → OpenScape Voice → Business Group → Private Numbering Plan List нажимаем на Add… и вводим название номерного плана. После этого в списке номерных планов можно нажать Set as Default для назначения планом по умолчанию. Настойка параметров абонента В разделе Configuration → OpenScape Voice → Business Group → Members → Subscribers нажимаем Add… и в открывшемся окне во вкладке General в поле Directory Number вводим полный номер абонента. Для корпоративной сети тип номера указываем Private. Переходим на вкладку Displays и в поле Display Name вводе имя абонента, которое будет отображаться при звонках (для того чтобы отображалось имя на русском языке его нужно ввести в поле Unicode Display Name). Далее во вкладке Connection в строке Type выставляем Dynamic, а в строке Transport Protocol - TCP и затем нажимаем на Save. После первичной настройки для добавления новых абонентов используется только пункты создания внутреннего номера и настройки параметров, в которых указываются уже существующие префиксы и номерные планы. Настройка параметров на телефоне Перейдем к настройке самого телефонного аппарата. Телефон можно настроить либо через веб-интерфейс, набрав в адресной строке https://[ip адрес телефона], либо через меню самого аппарата. Прежде всего необходимо проверить доступность телефона до OpenScape Voice. Это может сделать при помощи утилиты Ping, которая находится в меню Administrator → Diagnostics → Miscellaneous → IP tests. В этом же разделе можно произвести трассировку до необходимого адреса. Сетевые параметры можно изменить в разделе Network. После проверки доступности необходимо перейти в раздел System → System Identity и в строке Terminal Number ввести полный номер абонента вместе с префиксом. В Display Identity можно указать номер, который будет высвечиваться на экране. После этого нажать Submit. В соседнем разделе SIP interface нужно выбрать транспортный протокол, который мы ранее задавали в параметрах абонента (а данном случае TCP). Далее в разделе Registration необходимо указать адреса интерфейса SIP системы OpenScape, в полях SIP server address и SIP registrar address. В поле server type выбираем OS Voice и нажимаем Submit. После проведенных манипуляций на экране телефона высветится его номер. Проверить регистрацию телефона можно через CMP в меню Configuration → OpenScape Voice → Business Group → Subscriber нажав на кнопку More и выпадающем меню выбрав пункт Registration Status. Далее в строке поиска выбрать критерий, ввести данные и нажать на Search. В результате будет показан статус регистрации телефона. Будет выведена информация о номере абонента, типе регистрации, статусе регистрации, IP адресе терминала и полном SIP адресе терминала.
img
Продолжаем рассказывать про Terraform. Предыдущая статья тут. В данной статье мы разберем динамичные блоки кода в Terraform, которые можно использовать в своей работе. Данный функционал значительно облегчает написание кода Terraform с помощью которого мы управляем сервисами Amazon. В статье будет описан сценарий с генерацией кода Terraform. Данный функционал был добавлен в terraform 0.12 версии. Для работы создадим новую директорию, можно путем копирования из предыдущего урока. Директорию назовем lesson-5. Для написания кода мы по-прежнему используем текстовый редактор Atom. Мы можем создать файлик с именем DynamicSecurityGroup.tf или переименуем существующий webserver.tf если вы добавили папку путем копирования. Если вы создавали путем копирования отредактируем файл, убрав строчки, которые создают веб-сервер. Удаляем. Теперь мы начнем писать код Terraform, чтобы у нас появилась динамическая группа безопасности. В прошлой статье мы прописывали 2 правила. Данные правила открывали нам порты 80 и 22, аналогично можно прописать, чтобы открывался порт 443 ну или любой другой, который нам необходим для корректного инстанса и работоспособности сервиса. А теперь представим, что нам необходимо открыть еще 20 разных портов. Можно сделать это с помощью copy-paste, т.е. копированием и вставкой уже существующих блоков кода с редактированием протокола и номеров портов. В terraform версии 0.12 добавили функционал и назвали его DynamicBlocks, что позволит генерировать кусочки кода в Terraform. Добавим следующую часть кода: dynamic "ingress" { for_each = ["80", "443", "8080", "1541", "9092"] content { from_port = ingress.value to_port = ingress.value protocol = "tcp" cidr_blocks = ["0.0.0.0/0"] } } Разберем для лучшего понимания. Функция Dynamic, далее кавычки двойные и внутри мы пишем, что-будет динамическим, в нашем случае это функция Ingress. Открываем фигурные скобки и пишем цикл с помощью for_each = ["номерпорта1", "номерпорта2"] указывая номера портов. Следовательно, цикл for_each пройдется по каждому из параметров и будет применена конструкция content. Значения внутри конструкции content, будут заменены, а именно с какого порта на какой порт открывается доступ. Далее в конструкции content описываем используемый протокол сетевого уровня и cider_blocks – с каких IP или диапазонов IP разрешено использовать данной правило. Конструкция 0.0.0.0/0 позволяет указать, что данное правило с данным портом разрешено использовать всему интернету вне зависимости от IP адреса. В целях информационной безопасности рекомендую использовать конкретные подсети или конкретные IP адреса, конечно, если это не публичный сервис. Если посмотреть на пример, то написанное таким образом правило, сгенерирует нам 5 отдельных правил, т.е. получается достаточно удобно и сокращает нам количество строчек в коде, а также потенциально количество ошибок. Код становится более читаемым и легким. После использования в коде функции dynamic, мы можем удалить все ставшие ненужными функции ingress. Не забывайте изменить имя ресурса. Это делается путем редактирования переменной name в разделе функции resource, для читаемости кода и удобства управления ресурсами в облаке AWS. После того, как у нас готов наш код, мы можем его запустить. Так как, была создана новая папка, нам необходимо инициализировать ее использования. Переходим в необходимую директорию, в которой находится файл. И запускаем инициализацию стандартной командой terraform init. После ввода команды ожидаем пару минут, пока Terraform скачает все необходимые модули для подключения и работы. Следующей командой terraform apply мы запускаем код на исполнение. И получаем запрос на подтверждение операции. Среди вывода мы можем видеть: Это значит что все порты, которые были указаны в аргументах будут созданы. Осталось подтвердить и дождаться успешного выполнения операции.
img
Девятая часть тут. Ни одна среда передачи данных не может считаться совершенной. Если среда передачи является общей, как радиочастота (RF), существует возможность возникновения помех или даже столкновений дейтаграмм. Это когда несколько отправителей пытаются передать информацию одновременно. Результатом является искаженное сообщение, которое не может быть понято предполагаемым получателем. Даже специализированная среда, такая как подводный оптический кабель типа point-to-point (световолновой), может испытывать ошибки из—за деградации кабеля или точечных событий-даже, казалось бы, безумных событий, таких как солнечные вспышки, вызывающие излучение, которое, в свою очередь, мешает передаче данных по медному кабелю. Существует два ключевых вопроса, на которые сетевой транспорт должен ответить в области ошибок: Как можно обнаружить ошибки при передаче данных? Что должна делать сеть с ошибками при передаче данных? Далее рассматриваются некоторые из возможных ответов на эти вопросы. Обнаружение ошибок Первый шаг в работе с ошибками, независимо от того, вызваны ли они отказом носителя передачи, повреждением памяти в коммутационном устройстве вдоль пути или любой другой причиной, заключается в обнаружении ошибки. Проблема, конечно, в том, что когда получатель изучает данные, которые он получает, нет ничего, с чем можно было бы сравнить эти данные, чтобы обнаружить ошибку. Проверка четности — это самый простой механизм обнаружения. Существуют два взаимодополняющих алгоритма проверки четности. При четной проверке четности к каждому блоку данных добавляется один дополнительный бит. Если сумма битов в блоке данных четная—то есть если в блоке данных имеется четное число битов 1, то дополнительный бит устанавливается равным 0. Это сохраняет четное состояние четности блока. Если сумма битов нечетна, то дополнительный бит устанавливается равным 1, что переводит весь блок в состояние четной четности. Нечетная четность использует ту же самую дополнительную битную стратегию, но она требует, чтобы блок имел нечетную четность (нечетное число 1 бит). В качестве примера вычислите четную и нечетную четность для этих четырех октетов данных: 00110011 00111000 00110101 00110001 Простой подсчет цифр показывает, что в этих данных есть 14 «1» и 18 «0». Чтобы обеспечить обнаружение ошибок с помощью проверки четности, вы добавляете один бит к данным, либо делая общее число «1» в недавно увеличенном наборе битов четным для четной четности, либо нечетным для нечетной четности. Например, если вы хотите добавить четный бит четности в этом случае, дополнительный бит должен быть установлен в «0». Это происходит потому, что число «1» уже является четным числом. Установка дополнительного бита четности на «0» не добавит еще один «1» и, следовательно, не изменит, является ли общее число «1» четным или нечетным. Таким образом, для четной четности конечный набор битов равен: 00110011 00111000 00110101 00110001 0 С другой стороны, если вы хотите добавить один бит нечетной четности к этому набору битов, вам нужно будет сделать дополнительный бит четности «1», так что теперь есть 15 «1», а не 14. Для нечетной четности конечный набор битов равен: 00110011 00111000 00110101 00110001 1 Чтобы проверить, были ли данные повреждены или изменены при передаче, получатель может просто отметить, используется ли четная или нечетная четность, добавить число «1» и отбросить бит четности. Если число «1» не соответствует используемому виду четности (четное или нечетное), данные повреждены; в противном случае данные кажутся такими же, как и первоначально переданные. Этот новый бит, конечно, передается вместе с оригинальными битами. Что произойдет, если сам бит четности каким-то образом поврежден? Это на самом деле нормально - предположим, что даже проверка четности на месте, и передатчик посылает 00110011 00111000 00110101 00110001 0 Приемник, однако, получает 00110011 00111000 00110101 00110001 1 Сам бит четности был изменен с 0 на 1. Приемник будет считать «1», определяя, что их 15. Поскольку даже проверка четности используется, полученные данные будут помечены как имеющие ошибку, даже если это не так. Проверка на четность потенциально слишком чувствительна к сбоям, но в случае обнаружения ошибок лучше ошибиться в начале. Есть одна проблема с проверкой четности: она может обнаружить только один бит в передаваемом сигнале. Например, если даже четность используется, и передатчик отправляет 00110011 00111000 00110101 00110001 0 Приемник, однако, получает 00110010 00111000 00110101 00110000 0 Приемник подсчитает число «1» и обнаружит, что оно равно 12. Поскольку система использует четную четность, приемник будет считать данные правильными и обработает их в обычном режиме. Однако оба бита, выделенные жирным шрифтом, были повреждены. Если изменяется четное число битов в любой комбинации, проверка четности не может обнаружить изменение; только когда изменение включает нечетное число битов, проверка четности может обнаружить изменение данных. Циклическая проверка избыточности (Cyclic Redundancy Check - CRC) может обнаруживать более широкий диапазон изменений в передаваемых данных, используя деление (а не сложение) в циклах по всему набору данных, по одной небольшой части за раз. Работа с примером - лучший способ понять, как рассчитывается CRC. Расчет CRC начинается с полинома, как показано на рисунке 1. На рис. 1 трехчленный многочлен x3 + x2 + 1 расширен, чтобы включить все члены, включая члены, предшествующие 0 (и, следовательно, не влияют на результат вычисления независимо от значения x). Затем эти четыре коэффициента используются в качестве двоичного калькулятора, который будет использоваться для вычисления CRC. Чтобы выполнить CRC, начните с исходного двоичного набора данных и добавьте три дополнительных бита (поскольку исходный полином без коэффициентов имеет три члена; следовательно, это называется трехбитной проверкой CRC), как показано здесь: 10110011 00111001 (оригинальные данные) 10110011 00111001 000 (с добавленными битами CRC) Эти три бита необходимы для обеспечения того, чтобы все биты в исходных данных были включены в CRC; поскольку CRC перемещается слева направо по исходным данным, последние биты в исходных данных будут включены только в том случае, если эти заполняющие биты включены. Теперь начните с четырех битов слева (потому что четыре коэффициента представлены в виде четырех битов). Используйте операцию Exclusive OR (XOR) для сравнения крайних левых битов с битами CRC и сохраните результат, как показано здесь: 10110011 00111001 000 (дополненные данные) 1101 (Контрольные биты CRC) ---- 01100011 00111001 000 (результат XOR) XOR'инг двух двоичных цифр приводит к 0, если эти две цифры совпадают, и 1, если они не совпадают. Контрольные биты, называемые делителем, перемещаются на один бит вправо (некоторые шаги здесь можно пропустить), и операция повторяется до тех пор, пока не будет достигнут конец числа: 10110011 00111001 000 1101 01100011 00111001 000 1101 00001011 00111001 000 1101 00000110 00111001 000 110 1 00000000 10111001 000 1101 00000000 01101001 000 1101 00000000 00000001 000 1 101 00000000 00000000 101 CRC находится в последних трех битах, которые были первоначально добавлены в качестве заполнения; это "остаток" процесса разделения перемещения по исходным данным плюс исходное заполнение. Получателю несложно определить, были ли данные изменены, оставив биты CRC на месте (в данном случае 101) и используя исходный делитель поперек данных, как показано здесь: 10110011 00111001 101 1101 01100011 00111001 101 1101 00001011 00111001 101 1101 00000110 00111001 101 110 1 00000000 10111001 101 1101 00000000 01101001 101 1101 00000000 00000001 101 1 101 00000000 00000000 000 Если данные не были изменены, то результат этой операции всегда должен быть равен 0. Если бит был изменен, результат не будет равен 0, как показано здесь: 10110011 00111000 000 1101 01100011 00111000 000 1101 00001011 00111000 000 1101 00000110 00111000 000 110 1 00000000 10111000 000 1101 00000000 01101000 000 1101 00000000 00000000 000 1 101 00000000 00000001 000 CRC может показаться сложной операцией, но она играет на сильных сторонах компьютера—бинарных операциях конечной длины. Если длина CRC задается такой же, как у стандартного небольшого регистра в обычных процессорах, скажем, восемь бит, вычисление CRC-это довольно простой и быстрый процесс. Проверка CRC имеет то преимущество, что она устойчива к многобитовым изменениям, в отличие от проверки четности, описанной ранее. Исправление ошибок Однако обнаружение ошибки — это только половина проблемы. Как только ошибка обнаружена, что должна делать транспортная система? Есть, по существу, три варианта. Транспортная система может просто выбросить данные. В этом случае транспорт фактически переносит ответственность за ошибки на протоколы более высокого уровня или, возможно, само приложение. Поскольку некоторым приложениям может потребоваться полный набор данных без ошибок (например, система передачи файлов или финансовая транзакция), у них, вероятно, будет какой-то способ обнаружить любые пропущенные данные и повторно передать их. Приложения, которые не заботятся о небольших объемах отсутствующих данных (например, о голосовом потоке), могут просто игнорировать отсутствующие данные, восстанавливая информацию в приемнике, насколько это возможно, с учетом отсутствующей информации. Транспортная система может подать сигнал передатчику, что произошла ошибка, и позволить передатчику решить, что делать с этой информацией (как правило, данные при ошибке будут повторно переданы). Транспортная система может выйти за рамки отбрасывания данных, включив достаточное количество информации в исходную передачу, определить, где находится ошибка, и попытаться исправить ее. Это называется Прямой коррекцией ошибок (Forward Error Correction - FEC). Коды Хэмминга, один из первых разработанных механизмов FEC, также является одним из самых простых для объяснения. Код Хэмминга лучше всего объяснить на примере - для иллюстрации будет использована таблица 1. В Таблице № 1: Каждый бит в 12-битном пространстве, представляющий собой степень двух (1, 2, 4, 6, 8 и т. д.) и первый бит, устанавливается в качестве битов четности. 8-битное число, которое должно быть защищено с помощью FEC, 10110011, распределено по оставшимся битам в 12-битном пространстве. Каждый бит четности устанавливается равным 0, а затем четность вычисляется для каждого бита четности путем добавления числа «1» в позиции, где двоичный бит имеет тот же бит, что и бит четности. В частности: P1 имеет набор крайних правых битов в своем битовом номере; другие биты в числовом пространстве, которые также имеют набор крайних правых битов, включены в расчет четности (см. вторую строку таблицы, чтобы найти все позиции битов в номере с набором крайних правых битов). Они указаны в таблице с X в строке P1. Общее число «1»-нечетное число, 3, поэтому бит P1 устанавливается равным 1 (в этом примере используется четная четность). P2 имеет второй бит из правого набора; другие биты в числовом пространстве, которые имеют второй из правого набора битов, включены в расчет четности, как указано с помощью X в строке P2 таблицы. Общее число «1»-четное число, 4, поэтому бит P2 установлен в 0. P4 имеет третий бит из правого набора, поэтому другие биты, которые имеют третий бит из правого набора, имеют свои номера позиций, как указано с помощью X в строке P3. В отмеченных столбцах есть нечетное число «1», поэтому бит четности P4 установлен на 1. Чтобы определить, изменилась ли какая-либо информация, получатель может проверить биты четности таким же образом, как их вычислял отправитель; общее число 1s в любом наборе должно быть четным числом, включая бит четности. Если один из битов данных был перевернут, приемник никогда не должен найти ни одной ошибки четности, потому что каждая из битовых позиций в данных покрыта несколькими битами четности. Чтобы определить, какой бит данных является неправильным, приемник добавляет позиции битов четности, которые находятся в ошибке; результатом является положение бита, которое было перевернуто. Например, если бит в позиции 9, который является пятым битом данных, перевернут, то биты четности P1 и P8 будут ошибочными. В этом случае 8 + 1 = 9, так что бит в позиции 9 находится в ошибке, и его переворачивание исправит данные. Если один бит четности находится в ошибке—например, P1 или P8—то это тот бит четности, который был перевернут, и сами данные верны. В то время как код Хэмминга гениален, есть много битовых шаблонов-перевертышей, которые он не может обнаружить. Более современный код, такой как Reed-Solomon, может обнаруживать и исправлять более широкий диапазон условий ошибки, добавляя меньше дополнительной информации в поток данных. Существует большое количество различных видов CRC и кодов исправления ошибок, используемых во всем мире связи. Проверки CRC классифицируются по количеству битов, используемых в проверке (количество битов заполнения или, точнее, длины полинома), а в некоторых случаях - по конкретному применению. Например, универсальная последовательная шина использует 5-битный CRC (CRC-5-USB); Глобальная система мобильной связи (GSM), широко используемый стандарт сотовой связи, использует CRC-3-GSM; Мультидоступ с кодовым разделением каналов (CDMA), другой широко используемый стандарт сотовой связи, использует CRC-6-CDMA2000A, CRC-6-CDMA2000B и CRC-30; и некоторые автомобильные сети (CAN), используемые для соединения различных компонентов в автомобиле, используют CRC-17-CAN и CRC-21-CAN. Некоторые из этих различных функций CRC являются не единственной функцией, а скорее классом или семейством функций со многими различными кодами и опциями внутри них.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59