По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Приходишь ты такой в офис, уже налил чашечку кофе, поболтал у кулера, садишься за рабочее место и начинаешь писать: “уважаемые коллеги, бла бла бла”, и тут, после того, как все коллеги уважены в твоем обращении, ты вдруг задумываешься - а как это работает? Почему моя почта доходит до уважаемых коллег? Очень просто - сейчас расскажем как. Для начала разделим работу электронной почты на две части - отправка и получение. Отправка Начнём с отправки. Как только ты дописал своё письмо и нажал на кнопку “Отправить”, твой почтовый клиент (Outlook, Thunderbird, Gmail или Yandex Mail) отправит его на сервер по протоколу SMTP - Simple Mail Transfer Protocol, что переводится как простой протокол передачи почты. И тут начинаются первые проблемы. Дело в том, что этот протокол действительно “простой”. Он увидел свет аж в 1982 году, а как ты помнишь, тогда на безопасность было вообще пофиг, поэтому все письма отправлялись в открытом виде, пользователи никак не аутентифицировались, а хакеры успешно применяли его для рассылки спама. Поэтому, в 2008 году ему решили добавить фич в виде поддержки шифрования, авторизации, 8-битных наборов символов и ещё много всего полезного и назвали это все ESMTP, где Е означает extended, то есть расширенный. Но даже после этого протокол называют просто - SMTP. Короче, SMTP работает по клиент серверной модели. Он передает на почтовый сервер команды и получает от него ответы с результатами их обработки. Ответы от сервера - это кодовые значения, которые делятся на 5 типов. Те у которых код 200, означают что всё ок, а те что с кодом 500 - не ок. Ничего не напоминает? Да, очень похоже на HTTP При стандартной отправке письма происходит следующее: Твой клиент подключается к серверу Сервер выдаёт ему список доступных команд Твой клиент отправляет команды, которые содержат адрес отправителя, получателя и собственно само сообщение Сервер помещает твоё сообщение в очередь на отправку и если всё ок - отправляет его. А в случае если ты сын маминой подруги и позаботился о безопасности, клиент также пройдёт процедуру аутентификации и шифрования, прежде чем отправить письмо. Кстати, ты можешь указать в адресе отправителя что угодно и тебе за это ничего не будет. Дело в том, что в SMTP нет встроенных проверок подлинности отправителя, для этого используются внешние механизмы. Самый простой - это сопоставление домена и IP-адреса отправителя через DNS-запрос. Так что если ты решишь прикинуться Илоном Маском и написать кому нибудь письмо с просьбой отсыпать немножко биткоинов, то скорее всего оно попадёт в спам. SMTP используется не только для отправки писем от клиента к серверу, но и для передачи твоего письма между почтовыми серверами. Допустим, если ты напишешь Илону, то сначала твоё письмо попадёт на твой локальный сервер, который скорее всего не находится в домене spacex.com, поэтому твой сервер будет по тому же DNS искать в Интернетах почтовый сервер, отвечающий за маршрутизацию электронной почты домена Space X. Это кстати называется MX-запись. Когда эта информация будет найдена, то сервер пульнёт туда твоё письмо по протоколу SMTP. Для работы SMTP был зарезервирован TCP порт 25, но есть ещё 2 порта - это 465 и 587, оба они предназначены для связи клиента с сервером по защищенным механизмам, а 25 предназначался только для связи между собой почтовых серверов. Отлично, теперь твоё письмо, пройдя все системы антиспама и проверки лежит на почтовом сервере получателя и дожидается когда же его прочитают, а мы переходим ко второму действию - получение. Получение Тут возможны 2 варианта. Либо твой клиент будет получать почту по протоколу IMAP - Internet Message Access Protocol, либо по протоколу с не очень приличным названием POP3 - Post Office Protocol 3. Для POP3 почтовый сервак выступает в роли временного хранилища писем. Клиент, настроенный на работу с POP3, будет периодически обращаться на сервак и спрашивать: - “Есть чё по письмам?”, Сервер ответит ему: - “Ага есть”, тогда клиент ответит: - “Зашибись, а ну гони всё сюда и удали все копии, чтоб письма были только у меня” Именно так, в случае POP3 клиент будет хранить все письма только у себя, но в этом есть плюс - даже если у тебя пропадёт Интернет, ты всё равно сможешь получить доступ к своим письмам. Надо сказать, что с помощью самого клиента (но не POP3), можно попросить сервер всё таки хранить копии писем. А вот тебе ещё несколько неприятных фактов про POP3: Он работает только на одном клиенте, то есть если ты открыл клиент с POP3 на компе, то с мобильного телефона уже не сможешь посмотреть свою почту. А ещё нельзя разнести письма по папкам, настроить фильтры, пометить важность и т.д. А? Ну как тебе, удобно? Ладно, давай посмотрим какие ещё есть варианты. Ты можешь настроить свой клиент на работу с протоколом IMAP, тогда всем движем будет управлять почтовый сервак. В этом случае, твой почтовый клиент будет нужен только как интерфейс для работы с почтой. Зато ты сможешь получить доступ к своему почтовому ящику откуда угодно и с чего угодно. Сидишь за рабочим местом - читаешь почту с компа, отошёл в уборную - с мобилки, можно использовать веб-клиент и заходить через Интернет. Ах да, приятным бонусом будет то, что с помощью IMAP ты можешь настроить под себя папки, помечать письма как важные, запрашивать статус о прочтении письма, выполнять сложные поиски по письмам и многое другое. Но в этом есть и недостатки. Из-за того, что с IMAP всё слишком сложно, обработка писем серваком происходит гораздо дольше и “вообще то место на нём не резиновое”. Если постоянно хранить все письма без ротации, то рано или поздно почтовый ящик забьётся.
img
Virtual Network Computing (VNC) - это графическая система общего доступа к рабочему столу, которая позволяет использовать клавиатуру и мышь для удаленного управления другим компьютером. В этой статье описываются шаги по установке и настройке VNC-сервера в CentOS 8. Мы также покажем, как безопасно подключаться к VNC-серверу через туннель SSH. Подготовка Чтобы следовать этому руководству, вам необходимо войти в систему как пользователь с привилегиями sudo на удаленном компьютере CentOS. Установка окружения рабочего стола Как правило, на серверах не установлена среда рабочего стола. Если машина, к которой вы хотите подключиться, не имеет графического интерфейса, сначала установите ее. В противном случае пропустите этот шаг. Выполните следующую команду, чтобы установить Gnome, среду рабочего стола по умолчанию в CentOS 8 на удаленной машине: sudo dnf groupinstall "Server with GUI" В зависимости от вашей системы загрузка и установка пакетов и зависимостей Gnome может занять некоторое время. Установка VNC-сервера В качестве сервера мы будем использовать TigerVNC - активно поддерживаемый высокопроизводительный VNC-сервер с открытым исходным кодом. Он доступен в репозиториях CentOS по умолчанию, для его установки введите: sudo dnf install tigervnc-server После установки VNC-сервера выполните команду vncserver, чтобы создать начальную конфигурацию и установить пароль. Не используйте sudo при выполнении следующей команды: vncserver Вам будет предложено ввести и подтвердить пароль и указать, следует ли устанавливать его в качестве пароля только для просмотра (view-only). Если вы решите установить пароль только для просмотра, пользователь не сможет взаимодействовать с экземпляром VNC с помощью мыши и клавиатуры. You will require a password to access your desktops. Password: Verify: Would you like to enter a view-only password (y/n)? n /usr/bin/xauth: file /home/linuxize/.Xauthority does not exist New 'server2.linuxize.com:1 (linuxize)' desktop at :1 on machine server2.linuxize.com Starting applications specified in /etc/X11/Xvnc-session Log file is /home/linuxize/.vnc/server2.linuxize.com:1.log При первом запуске команды vncserver она создаст и сохранит файл паролей в каталоге ~/.vnc, который будет создан, если его не будет. Обратите внимание, что : 1 после имени хоста в выводе выше. Это указывает номер порта дисплея, на котором работает сервер VNC. В нашем случае сервер работает по TCP-порту 5901 (5900 + 1) . Если вы создадите второй экземпляр, он будет работать на следующем свободном порту, то есть : 2, что означает, что сервер работает на порту 5902 (5900 + 2) . Важно помнить, что при работе с серверами VNC: X - это порт дисплея, который относится к 5900 + X. Прежде чем перейти к следующему шагу, сначала остановите экземпляр VNC, используя команду vncserver с параметром -kill и номером сервера в качестве аргумента. В нашем случае сервер работает в порту 5901 (: 1), поэтому, чтобы остановить его, запустите: vncserver -kill :1 Мы получим такой вывод: Killing Xvnc process ID 19681 Настройка VNC-сервера Теперь, когда и Gnome, и TigerVNC установлены на удаленной машине CentOS, следующим шагом является настройка TigerVNC для использования Gnome. Сервер VNC использует файл ~/.vnc/xstartup для запуска приложений при создании нового рабочего стола. Откройте файл: vim ~/.vnc/xstartup И отредактируйте его следующим образом: #!/bin/sh [ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup [ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources vncconfig -iconic & dbus-launch --exit-with-session gnome-session & Сохраните и закройте файл (напоминаем, что в vim для этого нужно ввести :wq). Приведенный выше скрипт автоматически выполняется при каждом запуске или перезапуске сервера TigerVNC. Если вы хотите передать дополнительные параметры серверу VNC, откройте файл ~/.vnc/config и добавьте один параметр в каждой строке. Наиболее распространенные параметры перечислены в файле. Раскомментируйте и измените по своему вкусу. Вот пример: # securitytypes=vncauth,tlsvnc # desktop=sandbox geometry=1920x1080 # localhost # alwaysshared Создание файла модуля Systemd Файлы модулей позволяют легко запускать, останавливать и перезапускать службы. Как правило, лучшим местом для хранения файлов пользовательских модулей является ~/.config/systemd/user. Создайте каталог при помощи команды mkdir: mkdir -p ~/.config/systemd/user Скопируйте дефолтный файл модуля vncserver: cp /usr/lib/systemd/user/vncserver@.service ~/.config/systemd/user/ Сообщите systemd, что существует новый файл пользовательского модуля: systemctl --user daemon-reload Запустите службу VNC и включите ее при загрузке: systemctl --user enable vncserver@:1.service --now Число 1 после @: определяет порт дисплея, который будет прослушивать служба VNC. Мы используем 1, что означает, что VNC-сервер будет прослушивать порт 5901, как мы обсуждали ранее. Включите задержку, чтобы служба пользователя запускалась при загрузке и продолжала работать, когда пользователь не в системе: loginctl enable-linger Убедитесь, что служба успешно запущена: systemctl --user status vncserver@:1.service Получим такой вывод: ? vncserver@:1.service - Remote desktop service (VNC) Loaded: loaded (/home/linuxize/.config/systemd/user/vncserver@.service; enabled; vendor preset: enabled) Active: active (running) since Thu 2020-01-30 22:14:08 UTC; 2s ago Process: 20813 ExecStart=/usr/bin/vncserver :1 (code=exited, status=0/SUCCESS) Process: 20807 ExecStartPre=/bin/sh -c /usr/bin/vncserver -kill :1 > /dev/null 2>&1 || : (code=exited, status=0/SUCCESS) CGroup: /user.slice/user-1000.slice/user@1000.service/vncserver.slice/vncserver@:1.service ... Подключение к серверу VNC VNC не является зашифрованным протоколом и может подвергаться перехвату пакетов. Рекомендуемый подход заключается в создании туннеля SSH для безопасной пересылки трафика с локального компьютера через порт 5901 на удаленный сервер с тем же портом. Настройка SSH-туннелирования в Linux и macOS Если вы используете Linux, macOS или любую другую операционную систему на основе Unix на своем компьютере, вы можете легко создать туннель с помощью следующей команды ssh: ssh -L 5901:127.0.0.1:5901 -N -f -l username remote_server_ip Вам будет предложено ввести пароль пользователя. Замените username и remote_server_ip своим именем пользователя и IP-адресом вашего сервера. Настройка SSH-туннелирования в Windows Пользователи Windows могут настроить SSH-туннелирование с помощью PuTTY. Откройте Putty и введите IP-адрес вашего сервера в поле Host name or IP address. В меню «Connection» разверните пункт «SSH» и выберите «Tunnels» . Введите порт VNC-сервера 5901 в поле Source Port, введите адрес_сервера: 5901 в поле Destination и нажмите кнопку Add. Вернитесь на страницу ”Session”, чтобы сохранить настройки, чтобы вам не приходилось каждый раз вводить их. Чтобы войти на удаленный сервер, выберите сохраненный сеанс и нажмите кнопку «Open» . Подключение с помощью Vncviewer Чтобы подключиться к удаленному Серверу, откройте программу просмотра VNC и введите localhost: 5901. Вы можете использовать любую программу просмотра VNC, такую как TigerVNC, TightVNC, RealVNC, UltraVNC Vinagre и VNC Viewer для Google Chrome. Мы будем использовать TigerVNC: При появлении запроса введите пароль, и вы увидите рабочий стол Gnome по умолчанию. Это должно выглядеть примерно так: Готово! Теперь вы можете начать работу на удаленном рабочем столе с локального компьютера, используя клавиатуру и мышь. Итоги Мы показали вам, как настроить VNC-сервер и подключиться к удаленной машине CentOS 8. Чтобы запустить отображение для более чем одного пользователя, повторите те же шаги. Создайте исходную конфигурацию, установите пароль с помощью команды vncserver и создайте новый файл службы, используя другой порт.
img
Пока не начали, ознакомьтесь с материалом про обнаружение соседей в сетях. Реактивное распределение достижимости Возвращаясь к рисунку 9 в качестве справки, предположим, что развернута реактивная плоскость управления, и B хотел бы начать обмен потоками данных с G. Как C может разработать информацию о пересылке, необходимую для правильного переключения этого трафика? Маршрутизатор может отправить запрос по сети или отправить запрос контроллеру, чтобы обнаружить путь к месту назначения. Например: Когда B впервые подключается к сети, и C узнает об этом вновь подключенном хосте, C может отправить информацию о B в качестве достижимого пункта назначения на контроллер, подключенный к сети. Точно так же, когда G подключается к сети и D узнает об этом вновь подключенном хосте, D может отправить информацию о G как о достижимом пункте назначения контроллеру, подключенному к сети. Поскольку контроллер узнает о каждом хосте (или достижимом месте назначения), подключенном к сети (а в некоторых системах, также обо всей топологии сети), когда C необходимо узнать, как достичь хоста G, маршрутизатор может запросить контроллер, который может предоставить эту информацию. Примечание. Концепция централизованного контроллера подразумевает, что один контроллер предоставляет информацию для всей сети, но это не то, как термин централизованная плоскость управления обычно используется в мире сетевой инженерии. Однако идея централизации в сетевой инженерии довольно расплывчата. Вместо того, чтобы указывать на отдельное устройство, термин "централизованный" обычно используется для обозначения непереносимых скачков по сети и не вычисляемых каждым сетевым устройством независимо. Маршрутизатор (или хост) может отправить пакет проводника, который записывает маршрут от источника к месту назначения и сообщает эту информацию источнику проводника, который затем используется как исходный маршрут. Рисунок 10 иллюстрирует это. Используя рисунок 10 и предполагая исходную маршрутизацию на основе хоста: Хосту A необходимо отправить пакет H, но у него нет пути. A отправляет explorer на свой шлюз по умолчанию, маршрутизатор C. C не имеет маршрута к месту назначения, поэтому он пересылает explorer пакет по всем каналам, кроме того, по которому он получил пакет; следовательно, к B, D и E. B является хостом, не имеет дополнительных интерфейсов и не является целью explorer, поэтому он игнорирует explorer пакет. Ни у D, ни у E нет пути к H, поэтому они оба перенаправляют explorer на все интерфейсы, кроме того, на котором они получили пакет; следовательно, на канал с множественным доступом, совместно используемый между ними и F. F получает две копии одного и того же explorer пакета; он выбирает один на основе некоторых локальных критериев (таких как первый полученный или некоторая политика плоскости управления) и пересылает его на все интерфейсы, на которых он не получил пакет, к G. G получает пакет и, учитывая, что у него нет пути к H, пересылает его на единственное другое соединение, которое у него есть, что ведет к H. H принимает explorer и отвечает. В этой схеме каждое устройство на пути добавляет себя в список пройденных узлов перед пересылкой explorer пакета на все интерфейсы, кроме того, на котором он был получен. Таким образом, когда H получает explorer пакет (который в конечном итоге направлен на поиск пути к H), пакет теперь описывает полный путь от A до H. Когда H отвечает explorer, он помещает этот путь в тело пакета; когда A получит ответ, у него теперь будет полный путь от A до H. Примечание. В некоторых реализациях A не будет ни генерировать, ни получать ответ на пакет explorer. А с первого роутера, может выполнять эти функции. Точно так же сам H может не отвечать на эти пакеты explorer, а скорее G или любое другое сетевое устройство вдоль пути, имеющее информацию о том, как добраться до G. Однако в этих случаях общая концепция и обработка остаются теми же. Затем, чтобы отправить пакеты в H, A вставляет этот путь в заголовок пакета в виде исходного маршрута, содержащего путь [A, C, D, F, G, H]. Когда каждый маршрутизатор получает этот пакет, он проверяет исходный маршрут в заголовке, чтобы определить, на какой маршрутизатор перенаправить трафик следующему. Например, C проверит информацию о маршруте от источника в заголовке пакета и определит, что пакет должен быть отправлен в D следующим, в то время как D изучит эту информацию и определит, что ему нужно отправить пакет F. Примечание. В некоторых реализациях каждый explorer фактически отправляется в пункт назначения, который затем определяет, по какому пути должен идти трафик. На самом деле существует несколько различных способов реализации исходной маршрутизации; процесс, приведенный здесь, является лишь одним примером, объясняющим общую идею исходной маршрутизации. Упреждающее распределение доступности Проактивные плоскости управления, в отличие от реактивных плоскостей управления, распределяют информацию о достижимости и топологии по всей сети, когда информация становится доступной, а не тогда, когда она необходима для пересылки пакетов. Основная проблема, с которой сталкиваются плоскости упреждающего управления, заключается в обеспечении надежной передачи информации о доступности и топологии между узлами в сети, в результате чего все устройства имеют одинаковую информацию о доступности. Удаление информации о плоскости управления может привести к возникновению постоянных петель маршрутизации или к созданию черных дыр маршрутизации (так называемых, потому что они потребляют трафик, передаваемый в пункты назначения без следа), и то и другое серьезно снижает полезность сети для приложений. Существует несколько широко используемых механизмов для обеспечения надежной передачи информации плоскости управления по сети. Плоскость управления может периодически передавать информацию, задерживая более старую информацию. Это похоже на формирование соседей, поскольку каждый маршрутизатор в сети будет передавать имеющуюся информацию о доступности всем соседям (или на всех интерфейсах, в зависимости от плоскости управления) на основе таймера, обычно называемого таймером обновления или объявления. Информация о доступности, однажды полученная, хранится в локальной таблице и истекает по таймауту в течение некоторого периода времени, часто называемого таймером удержания (опять же, как при обнаружении соседа). Остальные описанные здесь механизмы полагаются на существующую систему обнаружения соседей, чтобы гарантировать надежную доставку - и постоянную надежность - информации о доступности. Во всех этих системах: Список соседей используется не только для управления передачей новой информации о доступности, но и для проверки правильности получения информации о доступности. Список соседей используется не только для управления передачей новой информации о доступности, но и для проверки правильности получения информации о доступности. В контексте распределения достижимости на основе соседей существует несколько обычно используемых механизмов для передачи определенной информации о доступности с устройства на устройство; часто любая заданная плоскость управления будет использовать более одного из описанных здесь методов. Плоскость управления может использовать порядковые номера (или какой-либо другой механизм) для обеспечения правильной репликации. Порядковые номера могут фактически использоваться для описания отдельных пакетов и больших блоков информации о доступности; Рисунок 11 иллюстрирует это. Получив пакет, получатель может отправить подтверждение получения пакета, отметив порядковые номера, которые он получил. Отдельный порядковый номер может использоваться для описания достижимости отдельного сетевого уровня. Информация (NLRI), передаваемая по сети. Информация NLRI, распределенная по нескольким пакетам, затем может быть описана с использованием одного порядкового номера. Плоскость управления может описывать базу данных для обеспечения правильной репликации. Например, плоскость управления может описывать информацию в базе данных как: Список порядковых номеров, соответствующих отдельным записям, содержащий информацию о доступности, содержащуюся в базе данных. Группы смежных порядковых номеров, содержащиеся в базе данных (несколько более компактный способ представления всех порядковых номеров) Набор порядковых номеров в паре с хешами информации в каждой записи информации о доступности; это имеет то преимущество, что не только описывает записи в базе данных, но также дает возможность получателю проверять содержимое каждой записи, но без переноса всей базы данных для выполнения проверки. Хэш по блокам записей о достижимости, содержащихся в базе данных, который может быть вычислен получателем для тех же записей и напрямую сравнен, чтобы определить, отсутствуют ли записи. Эти типы дескрипторов баз данных могут передаваться периодически, или только при наличии изменений, или даже в других конкретных ситуациях, чтобы не только обеспечить синхронизацию баз данных сетевыми устройствами, но и определить, что отсутствует или находится в ошибке, поэтому дополнительная информация может быть запрошена. Каждая из этих схем имеет преимущества и недостатки. Как правило, протоколы реализуют схему, которая позволяет реализации не только проверять отсутствующую информацию, но также информацию, которая была случайно повреждена либо в памяти, либо во время передачи.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59