По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Одной из важнейших потребностей системы Linux является постоянное обновление последних исправлений безопасности, доступных для соответствующего дистрибутива. В этой статье мы объясним, как настроить систему Debian и Ubuntu для автоматической установки и обновления необходимых пакетов безопасности или исправлений при необходимости. Для выполнения задач, описанных в этой статье, вам понадобятся права суперпользователя. Настройка автоматических обновлений безопасности в Debian и Ubuntu Для начала установите следующие пакеты: # aptitude update -y && aptitude install unattended-upgrades apt-listchanges -y где apt-listchanges сообщит, что было изменено во время обновления. Кстати, у нас есть статья, как сделать автоматическое обновление пакетов безопасности на CentOS или RHEL Затем откройте /etc/apt/apt.conf.d/50unattended-upgrades в текстовом редакторе и добавьте эту строку в блок Unattended-Upgrade :: Origins-Pattern : Unattended-Upgrade::Mail "root"; Наконец, используйте следующую команду для создания и заполнения необходимого файла конфигурации /etc/apt/apt.conf.d/20auto-upgrades для активации автоматических обновлений: # dpkg-reconfigure -plow unattended-upgrades Выберите Yes, когда будет предложено установить автоматические обновления (Automatically download and install stable updates? ) и затем убедитесь, что следующие две строки были добавлены в /etc/apt/apt.conf.d/20auto-upgrades: APT::Periodic::Update-Package-Lists "1"; APT::Periodic::Unattended-Upgrade "1"; И добавьте эту строку, чтобы сделать отчеты подробными: APT::Periodic::Verbose "2"; Наконец, проверьте /etc/apt/listchanges.conf, чтобы убедиться, что уведомления будут отправлены в root. email_address=root Готово! В этой статье мы объяснили, как обеспечить регулярное обновление вашей системы последними обновлениями безопасности. Кроме того, вы узнали, как настроить уведомления, чтобы держать себя в курсе, когда применяются исправления.
img
Что такое SEO? SEO (Search Engine Optimization – поисковая оптимизация) – это методика увеличения количества и качества трафика на веб-страницу путем использования результатов органической поисковой системы. Результаты органического поиска извлекаются из внутреннего алгоритма поисковой системы, а не в результате платной рекламы. Ниже приведен список соответствующей терминологии. SERP (Search Engine Results Page) или страница результатов поисковой системы – это просто страница результатов, которая собирает клики. Такие страницы собирают клики как платных, так и органических результатов поиска. SEM (Search Engine Marketing) или поисковый маркетинг – это методика маркетинга с использованием платной рекламы, которая появляется на SERP. PPC (pay-per-click) означает оплату за клик, модель интернет-маркетинга, в которой рекламодатели платят какую-то таксу каждый раз, когда кто-нибудь нажимает на одно из их объявлений. Изучение основ SEO, а также более сложных тем, может оказаться не самым простым процессом. В данной статье мы рассмотрим простые шаги, которые помогут создать SEO-дружественные веб-страницы, а также инструменты для их поддержки. Актуальный и значимый контент Уникальный, актуальный и содержательный контент является наиболее важным условием SEO-дружественного веб-сайта. Хоть это и кажется очевидным, но здесь очень легко ошибиться. Глубокое понимание пользователей веб-сайта очень важно для создания правильного контента. Контент, который «цепляет» пользователя, может повысить взаимодействие и снизить показатель «ненужных просмотров». Поисковые системы распознают время, проведенное пользователями на веб-сайте, а также уровни взаимодействия. Не хитри. SEO – это не карточная игра, в которой нужно умудриться перехитрить противника. «Сверхоптимизация» - это понятие, описывающее устаревшие методы, которые пытаются как-то обмануть поисковые системы. Например, метод «наполнения ссылками» или «наполнение контентом». Раньше подобные приемы могли оказаться эффективными, но в конечном итоге они были не долговечными. Стратегия ключевых слов может хорошо сработать, но только если все сделано правильно. Решающее значение для достижения успеха имеет правильно найденный баланс между использованием ключевых слов и релевантностью темы. Разнообразие содержания и формата – эффективный способ удерживать внимание. Богатый набор контента, включающий изображения, видео, таблицы и списки, может привлечь внимание пользователей. Организация контента в логическую иерархию веб-сайта – еще один фундаментальный аспект создания SEO-дружественного веб-сайта. Страница сервиса Google Search Console «Руководство по оптимизации поисковой системы (SEO) для начинающих» содержит подробное руководство по организации контента. Семантическая разметка и структурированные данные Хорошо структурированный контент является ключевым фактором для SEO наряду с хорошо сконструированным кодом, который наши браузеры и поисковые системы используют для интерпретации контента. Многие HTML-теги имеют семантическое значение, которое помогает интерпретаторам понимать и классифицировать контент. Как обычные веб-разработчики мы иногда чувствуем себя беспомощными в маркетинговом мире SEO, однако написание семантической разметки – один из самых эффективных инструментов. Незачем писать каждый HTML-элемент через div, когда у нас есть множество тегов для идентификации различного контента. Ниже приведены некоторые из наиболее полезных семантических тегов. Заголовки страниц Описание страницы Абзацы Списки Статьи Разделы Заголовки Нижние колонтитулы И т.д. Опять же, важно уметь создавать HTML-страницы, но не сильно мудрить с ними. Хорошо сбалансированное размещение ключевых слов в заголовках, описаниях, h1 и h2, может иметь большое значение. Заголовки и описания должны быть уникальными для разных страниц и релевантными по содержанию. Структурированные данные – это новый формат данных, соответствующий спецификации JSON-LD, который можно встраивать в HTML-страницы. Поисковые системы, такие как Google, интерпретируют структурированные данные для того, чтобы понять содержание страницы, а также собрать информацию об Интернете и мире в целом. Ниже приведен простой пример. <script type="application/ld+json"> { "@context": "https://schema.org", "@type": "Organization", "name": "Foo Software | Website Quality Monitoring", "url": "https://www.foo.software", "sameAs": [ "https://www.facebook.com/www.foo.software", "https://www.instagram.com/foosoftware/", "https://github.com/foo-software", "https://www.linkedin.com/company/foo-software" ] } Доступность и оценка работы веб-сайта Поисковые системы, определенно, поднимают планку допустимых веб-стандартов. Эффективность и доступность веб-страницы охватывают ориентированные на пользователя показатели, которые в конечном итоге могут повлиять на SEO. В процессе оценки работы веб-сайта запоминается путь пользователя, а также отмечаются действия пользователя. Ниже приведены самые важные показатели оценки работы. Первая отрисовка контента (FCP – First Contentful Paint): измеряет время от начала загрузки страницы до момента отображения любой части содержимого страницы на экране. Скорость загрузки основного контента (LCP – Largest Contentful Paint): измеряет время от начала загрузки страницы до момента отображения на экране самого большого изображения или текстового блока. Время ожидания до первого взаимодействия с контентом (FID –First InputDelay): измеряет время от момента, когда пользователь впервые начал взаимодействовать с вашим сайтом (т.е. когда он нажимает на ссылку, нажимает на кнопку или использует настраиваемый элемент управления на базе JavaScript), до момента, когда браузер фактически способен реагировать на это взаимодействие. Время до интерактивности (TTI – Time to Interactive): измеряет время с момента начала загрузки страницы до ее визуального отображения, загрузки ее исходных сценариев (если такие есть) и способности эффективно и быстро реагировать на вводимые пользователем данные. Общее время блокировки (TBT – Total Blocking Time): измеряет общее время между FCP и TTI, если основной поток был заблокирован на достаточно долгое время, чтобы он не реагировал на действия пользователей. Совокупное смещение макета (CLS – Cumulative Layout Shift): измеряет совокупный показатель всех неожиданных смещений макета, которые происходят в течение всего времени жизни страницы, начиная с загрузки страницы. Доступность веб-сайта – еще одна не менее важная концепция, которую следует учитывать при разработке веб-сайта, оптимизированного для поисковых систем. Наши веб-сайты просматривают не только люди, но и другие платформы, такие как программы для чтения с экрана, которые по факту делают тоже самое, что и люди. Улучшение доступности сделает ваш сайт более удобным для всех. Инструменты SEO В данной статье мы рассмотрели способы улучшения SEO. Но возникает вопрос: как поддерживать эти стандарты с течением времени? Существует множество инструментов, которые могут помогать нам анализировать и отслеживать SEO. Automated Lighthouse Check отслеживает качество веб-страниц с помощью Lighthouse. Он предоставляет подробные отчеты о SEO, качестве функционирования и доступности. Доступны бесплатные и премиум версии. Google Search Console обязательная для любого владельца веб-сайта, которому важна SEO. Он предоставляет информацию о том, какие поисковые запросы проходят через органический трафик, и детальный анализ. Заключение SEO – не самая простая методика, но среди трендовых приемов торговли, которые приходят и уходят, наиболее эффективный подход. Значимый и хорошо сформированный контент в сочетании с аналогичным кодом, представленные эффективным и доступным способом, несомненно ублажат богов SEO.
img
Зачем нужно шифрование и насколько оно важно? Функционирование любых цифровых сервисов невозможно без защиты данных. Еще совсем немного времени назад эта проблема не стояла так остро, так в основной массе устройств использовались относительно защищенные каналы связи. Типичный пример - телефонный кабель между персональным компьютером и провайдером. Даже, если по нему передаются незашифрованные данные, то их похитить затруднительно из-за объективных сложностей физического доступа к телефонной линии, особенно когда она проложена под землей, как это делается в городах. Теперь же, когда все, включая даже финансовые переводы, делается с мобильных устройств, ни о какой защите канала связи не может быть и речи, причем, так как радиоэфир доступен каждому. Значительное количество Wi-Fi карт довольно просто переводятся в режим мониторинга и могут принимать данные, передаваемые другими устройствами. Выход из этой ситуации заключается в использовании совершенных алгоритмов шифрования. Причем к этому решения одновременно пришли многие IT-разработчики в мире. Совершенно определенно, что алгоритмы шифрования должны быть стандартными, принятыми во всех странах мира, так как интернет глобален. При несоблюдении этого правила, то, что передается одним сервером, уже не может быть принято другим, так как алгоритм шифрования не известен. Итак, теперь понятно, что без общепринятых, сертифицированных и надежных алгоритмов шифрования не обойтись. Алгоритм 3DES или Triple DES Самый первый, принятый для использования в сети интернет алгоритм шифрования. 3DES разработан Мартином Хеллманом в 1978 году. Учитывая уже почетный возраст для IT-технологий, по оценкам НИСТ (Национальный Институт Стандартов и Технологий) он останется надежным до 2030-х годов. Несмотря на достаточное количество более современных и значительно более криптостойких алгоритмов, банковские системы продолжают использовать именно старый добрый 3DES, что косвенно говорит о его высокой надежности. Также он активно используется в сети интернет во всем мире. Рассмотрим его работу подробнее. Ну, а самое интересное - почти все более современные алгоритмы шифрования представляют собой доработанный DES. Даже утвержден неформальный термин, как "DES-подобные криптографические системы". В 1977 совместными усилиями многих разработчиков из компании IBM создается алгоритм DES (Data Encryption Standard, "Данные Шифрования Стандарт"), который утверждается правительством США. Всего через год на его основе появится доработанный вариант - 3DES, который предложит Мартин Хеллман и он тоже будет утвержден, как улучшенная версия. DES работает на так называемой сети Фейстеля. Это ни что не иное, как модульные вычисления - многократно повторяемая простая вычислительная операция на нескольких логических ячейках. Именно с этого конца смотрят хакеры, когда для подбора ключей используются майнинг-фермы на процессорах с тысячами ядер CUDA (в видеокартах). Так какие же вычисления выполняет "взломщик"? Ответ - разложение на простые множители или факторизацию с некоторыми дополнительными операциями. Для числа из трех знаков, разложение на простые множители займет несколько минут ручного пересчета, или миллисекунды работы компьютера. Пример - число 589, для которого ключ будет равен 19*31=589. На самом деле, алгоритмы шифрования работают очень просто. Попробуем методом факторизации, известным очень давно, скрыть ключ. Пусть ключом у нас будет число длиной 30 знаков (при работе с байтами и битами это могут быть и буквы). Добавим к нему еще одно число такой же (или отличающейся, это неважно) длины и перемножим их друг на друга: 852093601- 764194923 - 444097653875 х 783675281 - 873982111 - 733391653231 = 667764693545572117833209455404487475025224088909394663420125 Нам сейчас важно то, что на это перемножение мы затратили ничтожную вычислительную мощность. С таким простым умножением можно справиться даже без калькулятора, затратив несколько часов времени. Калькулятор, а там более мощный компьютер сделает это за тысячную долю секунды. Если же мы поставим обратную задачу - восстановить исходные множители, то на это даже на мощном компьютере уйдут годы, и это время будет увеличиваться квадратично по мере прибавления знаков в исходных числах. Таким образом, мы получили одностороннюю функцию, являющуюся базовой для всех распространенных алгоритмов шифрования. Именно на односторонних функциях (хеширование) построен DES, 3DES и последующие (AES) способы защиты информации. Перейдем к их более подробному рассмотрению. Алгоритм AES На данный момент времени самый распространенный алгоритм шифрования в мире. Название расшифровывается, как Advanced Encryption Standard (расширенный стандарт шифрования). AES утвержден национальным институтом технологий и стандартов США в 2001 году и в активном применении находится до сих пор. Максимальная длина шифроключа - 256 бит, что означает, что пароль может иметь до 32 символов из таблицы на 256 значений (кириллица, латиница, знаки препинания и другим символы). Это достаточно надежно даже для современного мира с мощными компьютерными мощностями для перебора (брутфорса). В 16-ричной системе счисления AES может иметь и более длинные ключи, но криптостойкость их точно такая же, ибо конечное число всех возможных вариантов идентичное, вне зависимости от системы счисления. Специалисты не раз отмечали, что в отличие от других шифров AES имеет простое математическое описание, но такие высказывания подвергались критике и опровергались математиками с указаниями ошибок в уравнениях. Тем не менее, Агентство Национальной Безопасности США рекомендует AES для защиты самых важных сведений, составляющих государственную тайну, а это тоже отличный показатель надежности. Ниже приведена блок-схема шифрования AES. Отметим, что разработка алгоритмов шифрования дело не столь сложное, как кажется на первый взгляд. Например, по заверению многих студентов при прохождении предмета "основы криптографии" они разрабатывали собственные "несложные" алгоритмы, наподобие DES. Кстати, все тот же DES имеет множество "клонов" с небольшими нововведениями разработчиков в России и других странах. Российские алгоритмы шифрования Одним из первых шифров, который утверждался официально, стал принятый в 1990 году ГОСТ 28147-89, разработанный на все той же сети Фейстеля. Конечно, алгоритм был разработан почти на целое поколение раньше, и использовался в КГБ СССР, просто необходимость его обнародования возникла только в эпоху цифровых данных. Официально открытым шифр стал только в 1994 году. Шифр "Калина" (тот же ГОСТ 28147-89 для России и ДСТУ ГОСТ 28147:2009 для Украины) будет действовать до 2022 года. За этот период он постепенно будет замещен более современными системами шифрования, такими, как "Магма" и "Кузнечик", поэтому для более подробного обзора в этой статье интересны именно они. "Магма" и "Кузнечик" стандартизованы ГОСТ 34.12-2018. Один документ описывает сразу оба стандарта. "Кузнечик" шифрует любые данные блоками по 128 бит, "Магма" - 64 бита. При этом в "Кузнечике" кусок данных в 128 бит шифруется ключом по 256 бит (34 байта, или пароль в 32 знака с выбором из 256 символов). Миллионы блоков данных шифруются одним ключом, поэтому его не нужно передавать с каждым сообщением заново. То, что ключ занимает больший объем, чем данные, никак не сказывается на работе алгоритма, а только дополнительно придает ему надежности. Конечно, "Кузнечик" разработан не для тех систем, где на счету каждый килобайт, как например, в узкополосной радиосвязи. Он оптимально подходит для применения в IT-сфере. Описание математического аппарата "Кузнечика" - тема отдельной статьи, которая будет понятна лишь людям хотя бы с начальным знанием математики, поэтому мы этого делать не будем. Отметим лишь некоторые особенности: Фиксированная таблица чисел для нелинейного преобразования (приведена в ГОСТ 34.12-2018). Фиксированная таблица для обратного нелинейного преобразования (также приведена в ГОСТ 34.12-2018). Многорежимность алгоритма для способов разбивания шифруемого потока данных на блоки: режим имитовставки, гаммирования, режим простой замены, замены с зацеплением, гаммирования с обратной связью. Помимо шифрования данных "Кузнечик" и "Магма" могут быть использованы для генерации ключей. Кстати, именно в этом была обнаружена их уязвимость. Так, на конференции CRYPTO 2015 группа специалистов заявила, что методом обратного проектирования им удалось раскрыть алгоритм генерации ключей, следовательно, они не являются случайной последовательностью, а вполне предсказуемы. Тем не менее, "Кузнечик" вполне может использоваться для ручного ввода ключа, а это полностью нивелирует данную уязвимость. Большое преимущество алгоритма "Кузнечик" - он может применяться без операционной системы и компьютера. Необходимы лишь маломощные микроконтроллеры. Этот способ описан в журнале Радиопромышленность том 28 №3. По той же технологии возможна разработка прошивок контроллеров и под другие алгоритмы шифрования. Такое решение под силу реализовать на аппаратной основе (микросхемы) даже в любительских условиях. Любительские разработки В конспирологических кругах распространено мнение об уязвимости стандартных алгоритмов шифрования, хотя они давно уже описаны математически и легко проверяются. Есть даже способ "майним биткоины на бумаге", то есть, используя карандаш и лист бумаги, давно было показано, как предварительно переведя данные в шестнадцатиричную систему, их зашифровать и расшифровать стандартным алгоритмом SHA-256, подробно изъяснив каждый момент на пальцах. Тем не менее, находятся люди, желающие разработать свой собственный алгоритм шифрования. Многие из них - студенты, изучающие криптографию. Рассмотрим некоторые интересные способы реализации таких шифров и передачи ключей. Использование картинки для составления ключа и передачи данных. Способ часто применяется для передачи небольших блоков, например ключей. Изменения (растр, фиксируемой программой шифрации/дешифрации) не должны быть заметны простому зрителю. Использование видео. Собственно, это вариант первого способа. Просто, в отличие от картинки, в видео можно зашифровать уже более значительный трафик, например, голосовой обмен в реальном времени. При этом требуется высокое разрешение картинки, что для современных мультимедийных устройств - не проблема. Встраивание данных в аудио. Разработано множество программных продуктов для решения данной задачи, получены соответствующие патенты, например, "Патент США 10,089,994" на "Аудио водяные знаки". Простые шифры замены на основе словарей, например, Библии, или менее известной литературы. Способ шифрования хорошо знаком по шпионским фильмам и наиболее прост для любительского применения. Динамичные ключи, автоматически изменяемые по параметрам устройства. Например, отслеживается 100 параметров ПК (объем диска, температура процессора, дата и время) и на их основе программа автоматически генерирует ключ. Способ очень удобен для автомобильных сигнализаций, считывающих все параметры по шине CAN. Способов шифровать данные огромное множество и все их можно разделить на шифр замены и шифр перестановки, а также комбинацию этих обоих способов. Алгоритмы шифрования и криптовалюты Совершенствование алгоритмов шифрования стало одним из основных факторов возникновения всемирного бума криптовалют. Сейчас уже очевидно, что технология блокчейн (в основе нее лежат все те же алгоритмы шифрования) будет иметь очень широкое применение в будущем. Для выработки криптовалют (майнинга) используются разнообразные компьютерные мощности, которые могут быть использованы для взлома различных алгоритмов шифрования. Именно поэтому в криптовалютах второго и последующих поколений эту уязвимость постепенно закрывают. Так Биткоин (криптовалюта первого поколения) использует для майнинига брутфорс SHA-256 и майнинг-ферма с небольшой перенастройкой может быть использована для взлома данного алгоритма. Эфириум, уже имеет свой собственный алгоритм шифрования, но у него другая особенность. Если для биткоина используются узкоспециализированные интегральные микросхемы (асики), неспособные выполнять никаких других операций, кроме перебора хешей в SHA-256, то эфириум "майнится" уже на универсальных процессорах с CUDA-ядрами. Не забываем, что криптовалюты только начали свое шествие по миру и в недалеком будущем эти недостатки будут устранены. Плата ASIC-майнера содержит одинаковые ячейки со специализированными процессорами для перебора строк по алгоритму шифрования SHA-256 Алгоритмы шифрования и квантовый компьютер Сделав обзор по современным алгоритмам шифрования, нельзя не упомянуть такую тему, как квантовый компьютер. Дело в том, что его создатели то и дело упоминают о "конце всей криптографии", как только квантовый компьютер заработает. Это было бы недостойно обсуждения в технических кругах, но такие заявления поступают от гигантов мировой индустрии, например транснациональной корпорации Google. Квантовый компьютер обещает иметь чрезвычайно высокую производительность, которая сделает бесполезной криптографию, так как любое шифрование будет раскрываться методом брутфорса. Учитывая, что на шифровании, в некотором смысле, стоит современный мир, например финансовая система, государства, корпорации, то изобретение квантового компьютера изменит мир почти также, как изобретение вечного двигателя, ибо у человечества уже не будет основного способа скрывать информацию. Пока, что, заявления о работающей модели квантового компьютера оставим для обсуждения учеными. Очевидно, что до работающей модели еще очень далеко, так, что криптографические алгоритмы продолжат нести свою службу по защите информации во всем мире.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59