По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Друг! Недавно в нашей статье мы рассказывали, как произвести базовую настройку телефонов в Cisco CME (CUCME) используя интерфейс командной строки. Сегодня мы сделаем то же самое, но уже при помощи графического интерфейса Cisco Configuration Professional (CCP) , про установку которого можно почитать здесь. /p> Добавление CME роутера в CCP Первым делом настроим наш роутер как CME. Для этого выбираем наш роутер в списке Select Community Member и нажимаем Configure и выбираем вкладку Unified Communications Features. Здесь нам будут доступны следующие опции: Cisco Unified Border Element (CUBE) – эта опция настраивает роутер как шлюз для IP телефонии для IP-IP сервисов, таких как IP Telephony Service Provision (IP-TSP). CUBE предоставляет типичные пограничные сервисы такие как NAT/PAT, и добавляет к ним VoIP функциональность для билинга, безопасности, контроля, QoS и прочего. IP Telephony – CUCME – CCP настраивает роутер как отдельную CME систему. IP Telephony – SRST – Позволяет IP телефонам использовать CME роутер как резервное устройство, если они потеряли связь с кластером CUCM. IP Telephony – Cisco Unified Call Manager Express as Cisco Unified Survivable Remote Site Telephony – предоставляет то же самое что и SRST, но с полным набором функций CME. Однако из-за этого уменьшается количество поддерживаемых телефонов. TDM Gateway – добавляет функционал шлюза, который может быть сконфигурирован вместо или совместно с CME. Media Resources – позволяет настроить цифровой сигнальный процессор DSP. Нам нужно поставить галочку IP Telephony, выбрать пункт CUCME – Cisco Unified Communications Manager Express, нажать ОК и затем в открывшемся окне нажать Deliver, после чего на маршрутизаторе будут произведены необходимые начальные настройки (какие именно команды будут применены можно увидеть в окне предпросмотра). Настройка Telephony Service Cisco предоставляет графический интерфейс для конфигурации ephone и ephone-dn (что это такое можно почитать тут). Однако просто взять и добавить ephone-dn (тут они называются “Extensions”) и ephone (они называются “Phones”) нельзя, интерфейс выдаст нам ошибку, что сначала нужно настроить Telephony Service Поэтому займемся настройкой Telephony Service. Чтобы это сделать нужно перейти в меню Configure – Unified Communications – Telephony Settings. Здесь нам необходимо настроить следующие поля: Supported Endpoints – какой протокол будут использовать телефоны (SIP, SCCP или оба) Maximum number of phones – максимальное количество ephone (команда max-ephones) Maximum number of extensions – максимальное количество ephone-dn (команда max-dn) Phone registration source IP address – адрес регистрации телефонов (команда ip source address) Иногда CCP может не обновлять конфигурацию CME, после внесения изменений. Если вы указали все необходимые настройки, но все еще получаете ошибку, что нужно настроить Telephony Settings, то в этом случае нужно вручную обновить конфигурацию, нажав кнопку Refresh. Если вы используете GNS3 для эмуляции роутера с CME, то при попытке войти в меню Telephony Settings будет появляться ошибка “An internal error has occurred”, и начальные настройки нужно ввести через интерфейс командной строки маршрутизатора. После того как мы заполнили поля нажимаем ОК, а затем Deliver. Теперь мы можем добавлять телефоны. Добавление телефонов, номеров и пользователей в CCP Начнем с добавления Extension, который технически является ephone-dn. Переходим во вкладку Configure – Unified Communications – Users, Phones and Extensions – Extensions и внизу нажимаем Create Здесь заполняем следующие поля: Primary Number – номер телефона (единственное обязательное поле) Secondary Number – дополнительный номер Name to be displayed on phone line – имя, которое будет отображаться на телефоне Description – описание Active calls allowed on a Phone Button – количество одновременных звонков (single-line или dual line) После заполнения нужных полей нажимаем ОК и Deliver, после чего телефон появляется в таблице с номерами. Теперь перейдем к настройке Phones. Для этого переходим во вкладку Configure – Unified Communications – Users, Phones, and Extensions – Phones (или Phones and Users, в зависимости от версии) и нажимаем Create. Здесь нам нужно заполнить два обязательных поля: модель телефона Cisco, который мы хотим добавить и его mac адрес, в формате xxxx.xxxx.xxxx . Внизу в столбце Available Extensions появятся созданные нами номера. Нам нужно перенести необходимый номер в правую таблицу, нажав кнопку со стрелкой вправо, выбрав номер линии и указав ее тип и тип звонка (в зависимости от версии CCP, привязка Phone к Extension может производиться в меню создания пользователя). В этом же окне мы можем создать пользователя. Используя свой аккаунт, пользователь может управлять настройками своего телефона через веб-интерфейс. Для этого переходим во вкладку User и указываем логин в строке User ID, а также пароль для входа. При создании юзера из этого меню, он будет ассоциирован с этим телефоном. В зависимости от версии CCP, может меняться местонахождение этой вкладки, и она может быть расположена в Configure – Unified Communications – Users, Phones, and Extensions – User Settings. Применяем настройки также нажатием клавиш ОК и Deliver. Также в CCP можно импортировать большое количество экстеншенов и телефонов в файлах .CSV через Bulk Import Wizard, который находится на панели справа. Также при помощи CCP можно проверить работоспособность системы и телефонов, через меню Configure – View – IOS Show Commands, где из выпадающего списка можно выбрать команду show и CCP отобразит ее вывод.
img
Перед начало убедитесь, что ознакомились с материалом про построение деревьев в сетях. Правило кратчайшего пути, является скорее отрицательным, чем положительным экспериментом; его всегда можно использовать для поиска пути без петель среди набора доступных путей, но не для определения того, какие другие пути в наборе также могут оказаться свободными от петель. Рисунок 4 показывает это. На рисунке 4 легко заметить, что кратчайший путь от A до пункта назначения проходит по пути [A, B, F]. Также легко заметить, что пути [A, C, F] и [A, D, E, F] являются альтернативными путями к одному и тому же месту назначения. Но свободны ли эти пути от петель? Ответ зависит от значения слова "без петель": обычно путь без петель - это такой путь, при котором трафик не будет проходить через какой-либо узел (не будет посещать какой-либо узел в топологии более одного раза). Хотя это определение в целом хорошее, его можно сузить в случае одного узла с несколькими следующими переходами, через которые он может отправлять трафик в достижимый пункт назначения. В частности, определение можно сузить до: Путь является свободным от петель, если устройство следующего прыжка не пересылает трафик к определенному месту назначения обратно ко мне (отправляющему узлу). В этом случае путь через C, с точки зрения A, можно назвать свободным от петель, если C не пересылает трафик к месту назначения через A. Другими словами, если A передает пакет C для пункта назначения, C не будет пересылать пакет обратно к A, а скорее пересылает пакет ближе к пункту назначения. Это определение несколько упрощает задачу поиска альтернативных путей без петель. Вместо того, чтобы рассматривать весь путь к месту назначения, A нужно только учитывать, будет ли какой-либо конкретный сосед пересылать трафик обратно самому A при пересылке трафика к месту назначения. Рассмотрим, например, путь [A, C, F]. Если A отправляет пакет C для пункта назначения за пределами F, переправит ли C этот пакет обратно в A? Доступные пути для C: [C, A, B, F], общей стоимостью 5 [C, A, D, E], общей стоимостью 6 [C, F], общей стоимостью 2 Учитывая, что C собирается выбрать кратчайший путь к месту назначения, он выберет [C, F] и, следовательно, не будет пересылать трафик обратно в A. Превращая это в вопрос: почему C не будет перенаправлять трафик обратно в A? Потому что у него есть путь, стоимость которого ниже, чем у любого пути через A до места назначения. Это можно обобщить и назвать downstream neighbor: Любой сосед с путем, который короче локального пути к месту назначения, не будет возвращать трафик обратно ко мне (отправляющему узлу). Или, скорее, учитывая, что локальная стоимость представлена как LC, а стоимость соседа представлена как NC, тогда: Если NC LC, то тогда neighbor is downstream. Теперь рассмотрим второй альтернативный путь, показанный на рисунке 4: [A, D, E, F]. Еще раз, если A отправляет трафик к пункту назначения к D, будет ли D зацикливать трафик обратно к A? Имеющиеся у D пути: [D, A, C, F], общей стоимостью 5 [D, A, B, F], общей стоимостью 4 [D, E, F], общей стоимостью 3 Предполагая, что D будет использовать кратчайший доступный путь, D будет пересылать любой такой трафик через E, а не обратно через A. Это можно обобщить и назвать альтернативой без петель (Loop-Free Alternate -LFA): Любой сосед, у которого путь короче, чем локальный путь к месту назначения, плюс стоимость доступа соседа ко мне (локальный узел), не будет возвращать трафик обратно ко мне (локальному узлу). Или, скорее, учитывая, что локальная стоимость обозначена как LC, стоимость соседа обозначена как NC, а стоимость обратно для локального узла (с точки зрения соседа) - BC: Если NC + BC LC, то сосед - это LFA. Есть две другие модели, которые часто используются для объяснения Loop-Free Alternate: модель водопада и пространство P/Q. Полезно посмотреть на эти модели чуть подробнее. Модель водопада (Waterfall (or Continental Divide) Model). Один из способов предотвратить образование петель в маршрутах, рассчитываемых плоскостью управления, - просто не объявлять маршруты соседям, которые пересылали бы трафик обратно мне (отправляющему узлу). Это называется разделенным горизонтом (split horizon). Это приводит к концепции трафика, проходящего через сеть, действующую как вода водопада или вдоль русла ручья, выбирая путь наименьшего сопротивления к месту назначения, как показано на рисунке 5. На рисунке 5, если трафик входит в сеть в точке C (в источнике 2) и направляется за пределы E, он будет течь по правой стороне кольца. Однако, если трафик входит в сеть в точке A и предназначен для выхода за пределы E, он будет проходить по левой стороне кольца. Чтобы предотвратить зацикливание трафика, выходящего за пределы E, в этом кольце, одна простая вещь, которую может сделать плоскость управления, - это либо не позволить A объявлять пункт назначения в C, либо не позволить C объявлять пункт назначения в A. Предотвращение одного из этих двух маршрутизаторов от объявления к другому называется разделенным горизонтом (split horizon), потому что это останавливает маршрут от распространения через горизонт, или, скорее, за пределами точки, где любое конкретное устройство знает, что трафик, передаваемый по определенному каналу, будет зациклен. Split horizon реализуется только за счет того, что устройству разрешается объявлять о доступности через интерфейсы, которые оно не использует для достижения указанного пункта назначения. В этом случае: D использует E для достижения пункта назначения, поэтому он не будет объявлять о доступности в направлении E C использует D для достижения пункта назначения, поэтому он не будет объявлять о доступности D B использует E для достижения пункта назначения, поэтому он не будет объявлять о доступности в направлении E A использует B для достижения пункта назначения, поэтому он не будет объявлять о доступности B Следовательно, A блокирует B от знания альтернативного пути, который он имеет к месту назначения через C, а C блокирует D от знания об альтернативном пути, который он имеет к месту назначения через A. Альтернативный путь без петель пересекает этот разделенный горизонт. точка в сети. На рис. 12-5 A может вычислить, что стоимость пути C меньше стоимости пути A, поэтому любой трафик A, направляемый в C к месту назначения, будет перенаправлен по какому-то другому пути, чем тот, о котором знает A. C, в терминах LFA, является нижестоящим соседом A. Следовательно, A блокирует B от знания об альтернативном пути, который он имеет к месту назначения через C, и C блокирует D от знания об альтернативном пути, который он имеет к месту назначения через A. Альтернативный путь без петли будет пересекать эту точку split horizon в сети. На рисунке 5 A может вычислить, что стоимость пути C меньше стоимости пути A, поэтому любой трафик A, направленный в C к месту назначения, будет перенаправлен по какому-то другому пути, чем тот, о котором знает A. В терминах LFA, С является нижестоящим соседом (downstream neighbor) A. P/Q пространство Еще одна модель, описывающая, как работают LFA, - это пространство P / Q. Рисунок 6 иллюстрирует эту модель. Проще всего начать с определения двух пространств. Предполагая, что линия связи [E, D] должна быть защищена от сбоя: Рассчитайте Shortest Path Tree из E (E использует стоимость путей к себе, а не стоимость от себя, при вычислении этого дерева, потому что трафик течет к D по этому пути). Удалите линию связи [E,D] вместе с любыми узлами, доступными только при прохождении через эту линию. Остальные узлы, которых может достичь E, - это пространство Q. Рассчитайте Shortest Path Tree из D. Удалите канал [E, D] вместе со всеми узлами, доступными только при прохождении по линии. Остальные узлы, которых может достичь D, находятся в пространстве P. Если D может найти маршрутизатор в пространстве Q, на который будет перенаправляться трафик в случае отказа канала [E, D]- это LFA. Удаленные (remote) Loop-Free Alternates Что делать, если нет LFA? Иногда можно найти удаленную альтернативу без петель (remote Loop-Free Alternate - rLFA), которая также может передавать трафик к месту назначения. RLFA не подключен напрямую к вычисляющему маршрутизатору, а скорее находится на расстоянии одного или нескольких переходов. Это означает, что трафик должен передаваться через маршрутизаторы между вычисляющим маршрутизатором и remote next hop. Обычно это достигается путем туннелирования трафика. Эти модели могут объяснить rLFA, не обращая внимания на математику, необходимую для их расчета. Понимание того, где кольцо "разделится" на P и Q, или на две половины, разделенные split horizon, поможет вам быстро понять, где rLFA можно использовать для обхода сбоя, даже если LFA отсутствует. Возвращаясь к рисунку 6, например, если канал [E, D] выходит из строя, D должен просто ждать, пока сеть сойдется, чтобы начать пересылку трафика к месту назначения. Лучший путь от E был удален из дерева D из-за сбоя, и E не имеет LFA, на который он мог бы пересылать трафик. Вернитесь к определению loop-free path, с которого начался этот раздел-это любой сосед, к которому устройство может перенаправлять трафик без возврата трафика. Нет никакой особой причины, по которой сосед, которому устройство отправляет пакеты в случае сбоя локальной линии связи, должен быть локально подключен. В разделе "виртуализация сети" описывается возможность создания туннеля или топологии наложения, которая может передавать трафик между любыми двумя узлами сети. Учитывая возможность туннелирования трафика через C, поэтому C пересылает трафик не на основе фактического пункта назначения, а на основе заголовка туннеля, D может пересылать трафик непосредственно на A, минуя петлю. Когда канал [E, D] не работает, D может сделать следующее: Вычислите ближайшую точку в сети, где трафик может быть туннелирован и не вернется к самому C. Сформируйте туннель к этому маршрутизатору. Инкапсулируйте трафик в заголовок туннеля. Перенаправьте трафик. Примечание. В реальных реализациях туннель rLFA будет рассчитываться заранее, а не рассчитываться во время сбоя. Эти туннели rLFA не обязательно должны быть видимы для обычного процесса пересылки. Эта информация предоставлена для ясности того, как работает этот процесс, а не сосредоточен на том, как он обычно осуществляется. D будет перенаправлять трафик в пункт назначения туннеля, а не в исходный пункт назначения - это обходит запись локальной таблицы переадресации C для исходного пункта назначения, что возвращает трафик обратно в C. Расчет таких точек пересечения будет обсуждаться в чуть позже в статьях, посвященных первому алгоритму кратчайшего пути Дейкстры.
img
Сегодня в статье мы расскажем как перезапустить Агентов Управления (Management agents) в ESXi. Это может быть необходимо в случае если невозможно подключение напрямую к хосту ESXi или управление с помощью vCenter Server или если vCenter Server отображает сообщение об ошибке: Virtual machine creation may fail because agent is unable to retrieve VM creation options from the host (создание ВМ может потерпеть неудачу, из-за невозможности получения параметров создания виртуальных машин с хоста). Решение Для устранения неполадок с подключением ESXi перезапустите Агентов Управления на хосте ESXi Предупреждение: если LACP настроен на сеть VSAN не перезагружайте Агентов Управления при хостах ESXi под управлением vSAN. Перезапуск Агентов Управления может повлиять на задачи, которые выполняются на хосте ESXi в момент перезапуска Проверьте наличие каких-либо проблем с хранилищем перед перезапуском службы host deamon hostd или services.sh Перезапустите Агентов Управления ESXi используя Direct Console User Interface (DCUI) Подключитесь к консоли вашего ESXi хоста. Нажмите F2, чтобы настроить систему. Войдите в систему с правами администратора. Используйте стрелки вверх/вниз, чтобы перейти к устранению неполадок Troubleshooting Options -> Restart Management Agents (Функции -> Перезапустить Management Agents). Нажмите Enter. Нажмите F11 для перезапуска сервера. После перезапуска сервера, нажми Enter. Нажмите Esc для выхода Примечание: Вы можете также перезапустить службы с помощью Host Client. В Host Client выберите Host>> Manage>> Services и Restart (Хост >> Управление >> Услуги) и выберите услугу перезапуска. Перезапуск Агентов Управления с помощью ESXi Using ESXi Shell или Secure Shell (SSH) Войдите в систему ESXi Shell или SSH с правами администратора Перезапустите службы host deamon ESXi и vCenter Agent с помощью следующих команд: /etc/init.d/hostd restart /etc/init.d/vpxa restart Или Чтобы сбросить сеть управления на определенном интерфейсе VMkernel, по умолчанию vmk0 выполните команду: esxcli network ip interface set -e false -i vmk0; esxcli network ip interface set -e true -i vmk0 Примечание: Использование точки с запятой ; между двумя командами гарантирует то, что интерфейс VMkernel будет отключен, а затем снова включен. Если интерфейс управления не работает на vmk0, измените приведенную выше команду в соответствии с используемым интерфейсом VMkernel. Чтобы перезапустить все Агенты Управления на хосте, выполните команду: services.sh restart Внимание: Если LACP включен и настроен, не перезапускайте службы управления с помощью команды services.sh. Вместо этого перезапустите независимые службы, используя команду /etc/init.d/module restart Если проблема не устранена, и вы перезапускаете все службы, которые являются частью сценария services.sh, подождите, прежде чем переходить к сценарию. Если NSX настроен в среде, не запускайте для перезапуска команду /sbin/services.sh restart, поскольку это перезапустит все службы на хосте ESXi. Если вам нужно перезапустить management agents на хосте ESXi, перезапустите vpxa, host.d и fdm по отдельности. Если вам также необходимо выполнить команду перезапуска /sbin/services.sh restart, поскольку перезапуск каждого management agent не работает, то перенесите все VM с хоста ESXi и переведите хост в режим обслуживания, если это возможно. Если вы не уверены в том, что NSX для vSphere установлен на хосте ESXi, выполните эту команду, для проверки: esxcli software vib list --rebooting-image | grep esx-* Найдите следующие VIB, чтобы определить, установлен ли NSX на хосте ESXi: vsip-esx esx-vxlan Если вы используете общую графику в среде View (VGPU, vDGA, vSGA), не используйте services.sh. Это отключит службу xorg, которая отвечает за графику на уровне гостевого ОС. Отключив графику из гостевого уровня ОС, вы вызовете сбой нагрузки VDI с использованием общей графики. Убедитесь, что вы используете общую графику для перезапуска только hostd и vpxa, если вы не в режиме обслуживания.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59