По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Допустим нам нужно отправить почтой посылку куда-то в Лондон. Что мы делаем? Идем в почту, берём специальный бланк и заполняем соответствующие поля. Отправитель Вася Пупкин, адрес: ул. Тверская, дом 40, кв. 36., Москва, Россия. Кому: Шерлок Холмс, Baker Street 221B, London, United Kingdom. То есть мы отправили посылку конкретному лицу, проживающему по конкретному адресу. Как и в реальном мире, в мире информационных технологий тоже есть своя адресация. В данном случае получателем выступает компьютер, за которым закреплён соответствующий IP адрес. IP aдрес это уникальный идентификатор устройства, подключённого к локальной сети или интернету. p> Видео про IP - адрес На данный момент существуют две версии IP адресов: IP версии 4 (IPv4) и IP версии 6 (IPv6). Смысл создания новой версии заключается в том, что IP адреса в 4-ой версии уже исчерпаны. А новые устройства в сети появляются с огромной скоростью и им всем нужно выделать свой уникальный адрес. IPv4 представляет собой 32-битное двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. Но так как компьютеры понимают только двоичную систему исчисления, то указанный адрес преобразуют в двоичную форму - 11000000 10101000 00000000 00000000. Длина же IPv6 адресов равна 128-битам. IPv6 адрес представляется в виде строки шестнадцатеричных цифр, разделенной двоеточиями на восемь групп, по 4 шестнадцатеричных цифрр в каждой. Например: 2003:00af:café:3daf:1000:edaf:1001:afad. Каждая группа равна 16 битам в двоичном представлении. IP адреса принято делить на публичные и приватные. Публичный адрес это адрес, который виден в Интернете. Все сайты в глобальной сети имеют публичный или "белый" IP адрес. Для merionet.ru он равен 212.193.249.136. Да и ваш компьютер тоже имеет публичный адрес, который можете просмотреть либо на роутере, либо на специальных сайтах, например 2ip.ru. Но в вашем случае под одним IP адресом в Интернет могут выходить 10, 50, 100 пользователей из вашей же сети. Потому что на самом деле это адрес не конкретного компьютера в сети, а маршрутизатора, через который вы выходите в сеть. Публичные адреса должны быть уникальны в пределах всего Интернета. Приватные же адреса это такой тип адресов, которые используют в пределах одной локальной сети и не маршрутизируются в Интернет. Существуют следующие диапазоны приватных IP адресов: 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255. Посмотреть свой локальный приватный адрес можете либо в свойствах сетевого адаптера, либо в командной строке набрав команду ipconfig. В начале зарождения Интернета IP адреса было принято делить на классы: Класс Начальный IP Конечный IP Число сетей Число хостов Класс A 0.0.0.0 127.255.255.255 126 16777214 Класс B 128.0.0.0 191.255.255.255 16382 65536 Класс C 192.0.0.0 223.255.255.255 2097150 254 Класс D 224.0.0.0 239.255.255.255 Класс E 240.0.0.0 254.255.255.255 При этом адрес 0.0.0.0 зарезервирован, он назначается хосту, когда он только что подключен к сети и не имеет IP адреса. Если в сети имеется DHCP сервер, то хост в качестве адреса источника отправляет адрес 0.0.0.0. Адрес 255.255.255.255 это широковещательный адрес. А адреса начинающиеся на 127 зарезервированы для так называемой loopback адресации. Адреса класса D зарезервированы для мультикаст соединений, адреса класса E для исследований (не только крысы страдают от исследований). IP адрес хоста имеет две части адрес сети и адрес узла. Где адрес сети, а где адрес узла - определяется маской сети. Маска сети это 32-битное число, где подряд идущие биты всегда равны 1. На самом деле каждое десятичное число IP адреса - это не что иное, как сумма степеней числа 2. Например, 192 это 1100000. Чтобы получить это значение переводим десятичное число в двоичное. Хотя это азы информатики, но подойдет любой калькулятор, даже встроенный в Windows: А теперь посмотрим как мы получаем 192 из суммы степеней двойки: 1 * 27+1*26+0*25+0*24+0*23+0*27+0*21+0*20 = 1*27+1*26 = 128 + 64 = 192. И так каждый октет может включать в себя следующие числа: 128 64 32 16 8 4 2 1. Если в IP адресе есть место одной из указанных чисел, то в двоичном представлении на месте этого числа подставляется 1, если нет 0. В маске сети все подряд идущие биты должны быть равны 1. Первый октет Второй октет Третий октет Четвёртый октет 255 255 255 0 11111111 11111111 11111111 00000000 Принадлежность адреса классу определяется по первым битам. Для сетей класса A первый бит всегда равен 0, для класса B 10, для класса С 110. При классовой адресации за каждым классом закреплена своя маска подсети. Для класса А это 255.0.0.0, класса B 255.255.0.0, а для класса C 255.255.255.0. Но со временем стало ясно, что классовая адресация не оптимально использует существующие адреса. Поэтому перешли на бесклассовую адресацию, так называемую Classless Inter-Domain Routing (CIDR), где любой подсети можно задать любую маску. Отличную от стандартной. При это, маску подсети можно увеличивать, но никак не уменьшать. Наверное не раз встречали адреса типа 10.10.121.25 255.255.255.0. Этот адрес по сути является адресом класса А, но маска относится к классу C. Но даже в случае бесклассовой адресации наблюдается перерасход IP адресов. В маленьких сетях, где всего один отдел с 40-50 компьютерами это не очень заметно. Но в больших сетях, где нужно каждому отделу выделить свой диапазон IP адресов этот вопрос стоит боком. Например, бухгалтерии вы выделили сеть с адресом 192.168.1.0/24, а там всего 25 хостов. В указанной сети же 254 адресов. Значит 229 адреса остаются не используемыми. На самом деле здесь 256 адресов, но первый 192.168.1.0 является адресом сети, а последний 192.168.1.255 широковещательнымадресом. Итого в распоряжении администратора всего 254 адреса. Существует формула расчета количества хостов в указанной сети. Выглядит она следующим образом: H=2n 2 Где H число хостов, n число бит отведенных под номер хоста. Например, 192.168.1.0 маска 255.255.255.0. Здесь первый 24 бит определяют номер сети, а оставшиеся 8 бит номер хоста. Исходя из этого, H=28-2 = 254. Тут и вспоминаем про деление сетей на подсети. Кроме экономии адресного пространства, сабнеттинг дает еще и дополнительную безопасность. Трафик между сетями с разной маской не ходит, а значит пользователи одной подсети не смогут прослушать трафик пользователей в другой. Это еще и упрощает управление разрешениями в сети, так как можно назначать списки доступа и тем самым ограничивать доступ пользователей в критически важные сегменты сети. С другой стороны, сегментирование сети позволяет увеличивать количество широковещательных доменов, уменьшая при этом сам широковещательный трафик. В сегментировании сети используется такой подход как маска подсети с переменной длиной VLSM (Variable Length Subnet Mask). Суть состоит в том, что вам выделяют диапазон IP адресов, и вы должны распределить их так, чтобы никто не мог проснифить трафик другого и всем досталось хотя бы по одному адресу. Выделением блоков IP адресов занимается организация IANA (Internet Assigned Numbers Authority ). Она делегирует права региональным регистраторам, которые в свою очередь выделяют блоки адресов национальным. Например, региональным регистратором для Европы является RIPE. А последние в свою очередь делят адреса, имеющиеся у них, между провайдерами. Например, нам выделили адрес 192.168.25.0 с маской подсети 255.255.255.0. Маску подсети можно указывать сокращенно: 192.168.25.0/24. 24 это число единиц в маске. Нам как администраторам предприятия предстоит разделить их между четырьмя отделами, в которых по 50 хостов. Начинаем вычисления. Нам нужно 5 * 50 = 250 уникальных адресов. Но основная задача, пользователи должны быть в разных подсетях. Значит необходимо четыре подсети. Для определения количества подсетей в сети есть специальная формула: N = 2n Где N число подсетей, а n число бит заимствованных из хостовой части IP адреса. В нашем случае мы пока не позаимствовали ничего значить подсеть всего одна: 20 = 1. Нам же нужно четыре подсети. Простая математика нам подсказывает, что должны позаимствовать минимум 2 бита: 22 = 4. Итак, маска у нас становиться 255.255.255.192 или /26. Остальные 6 битов нам дают количество адресов равных 64 для каждой подсети, из которых доступны 62 адреса, что полностью покрывает нужду наших подсетей: Сеть № Число хостов Маска подсети Первый IP Последний IP Номер подсети Широковещательный адрес Сеть 1 50 255.255.255.192 192.168.25.1 192.168.25.62 192.168.25.0 192.168.25.63 Сеть 2 50 255.255.255.192 192.168.25.65 192.168.25.126 192.168.25.64 192.168.25.127 Сеть 3 50 255.255.255.192 192.168.25.129 192.168.25.190 192.168.25.128 192.168.25.191 Сеть 4 50 255.255.255.192 192.168.25.193 192.168.25.254 192.168.25.192 192.168.25.255 Тестировать будем в виртуальной среде Cisco Packet Tracer. Как видно из рисунка, здесь три разных хоста маски у всех одинаковые, но маршруты по умолчанию разные. По умолчанию, трафик между всеми этими подсетями идет, так как у нас в сети существует маршрутизатор, который занимается передачей трафика из одной подсети в другую. Чтобы ограничить трафик нужно прописать соответствующие списки доступа Access Lists. Но мы не будем заниматься этим сейчас, так как тема статьи совсем другая. Чтобы определить к какой подсети относится хост, устройство выполняет операцию побитового "И" между адресом узла и маской подсети. Побитовое "И" это бинарная операция, действие которой эквивалентно применению логического "И" к каждой паре битов, которые стоят на одинаковых позициях в двоичных представлениях операндов. Другими словами, если оба соответствующих бита операндов равны 1, результирующий двоичный разряд равен 1; если же хотя бы один бит из пары равен 0, результирующий двоичный разряд равен 0.Покажем на примере: 192 168 1 125 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 255 255 255 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 192 168 1 0 На рисунке выше маска подсети для всех сетей одинаковая 255.255.255.192. Но давайте представим ситуацию, когда у нас подсетей так же 4, но количество хостов разное: Сеть 1 120 Сеть 2 60 Сеть 3 25 Сеть 4 12 В принципе, можно оставить и предыдущую маску, но мы провайдер, у нас много клиентов и мы не можем позволить себе тратить IP адреса впустую. Итак, в первой сети на нужно 120 IP адресов, значит маска сети должна быть где-то в районе 120. Мы могли бы выбрать маской 120, но это невозможно, так как 120 не является степенью двойки, поэтому выбираем 128. Для второй подсети первая доступная маска 64. Но так как первые 128 адресов выделены под Сеть 1, то выбираем следующие 64 адреса, а маска будет 192, потому что именно эта маска даст нам нужное количество адресов. Третья сеть у нас состоит из 25 хостов. Ближайший возможный блок адресов это 32. А маска 224 как раз даст эти 32 адреса. В четвёртой же сети нам нужно 16 адресов. Маска будет равна 240. Лайфхак: Чтобы быстро вычислить маску подсети из количества доступных адресов вычитываем необходимое. Например, в этой подсети 256 адресов, нам нужно 32 адреса. Производим простое вычисление: 256 32 = 224. Это число и будет в последнем октете. Сеть № Число хостов Маска подсети Первый IP Последний IP Номер подсети Широковещательный адрес Сеть 1 120 255.255.255.128 192.168.25.1 192.168.25.126 192.168.25.0 192.168.25.127 Сеть 2 60 255.255.255.192 192.168.25.129 192.168.25.190 192.168.25.128 192.168.25.191 Сеть 3 25 255.255.255.224 192.168.25.193 192.168.25.222 192.168.25.192 192.168.25.223 Сеть 4 12 255.255.255.240 192.168.25.225 192.168.25.238 192.168.25.224 192.168.25.239 А сейчас каждому интерфейсу маршрутизатора присвоен IP подсетей с масками разной длины. При этом в каждой подсети у нас остались как минимум 2 свободных адреса на случай добавления новых хостов. На самом деле в сети уже есть готовые таблицы, где уже произведены все подсчеты и прописаны маски для разных сетей. Но умение самому вычислять не помешает, так как на экзаменах по сетевой сертификации попадаются такие задания.
img
Всем привет! Мы продолжаем знакомиться с операционной системой Cisco IOS. Недавно в статьях мы уже рассмотрели операционную систему Cisco IOSи ее режимы. В этой статье мы рассмотрим основную структуру команд Cisco IOS. Структура команд Устройства, работающие на Cisco IOS, поддерживают множество команд, каждая из которых имеет определенный формат или синтаксис и может быть выполнена только в соответствующем режиме. Общий синтаксис команды - это команда, за которой следуют любые подходящие ключевые слова и аргументы. Некоторые команды включают подмножество ключевых слов и аргументов, которые обеспечивают дополнительную функциональность. Команды используются для выполнения действия, а ключевые слова используются для идентификации. Команда представляет собой начальное слово или слова, введенные в командной строке. Команды не чувствительны к регистру. После каждой введенной команды, включая любые ключевые слова и аргументы, нужно нажать Enter, чтобы отправить команду командному интерпретатору. Ключевые слова описывают конкретные параметры командного интерпретатора. Например, команда show используется для отображения информации об устройстве. Эта команда имеет различные ключевые слова, которые должны использоваться для определения того, какой конкретный вывод должен отображаться. Например: Switch # show running-config За командой show следует ключевое слово running-config, которое указывает, что текущая конфигурация должна отображаться в качестве вывода. Для команды может потребоваться один или несколько аргументов. В отличие от ключевого слова, аргумент обычно не является предопределенным словом. Аргумент - это значение или переменная, определяемая пользователем. Например: Switch> traceroute 192.168.254.254 Traceroute - команда, 192.168.254.254 - определяемый пользователем аргумент. Контекстно-зависимая справка Контекстно-зависимая справка содержит список команд и аргументов, связанных с этими командами в контексте текущего режима. Чтобы получить доступ к контекстно-зависимой справке, нужно ввести знак вопроса “?” в любом меню. Результат появится сразу, даже без нажатия клавиши Enter. Одна из методов использования контекстно-зависимой справки - это получение списка доступных команд. Это можно использовать, если вы не уверены как правильно пишется команда или хотите увидеть, поддерживает ли IOS определенную команду в определенном режиме. Например, чтобы отобразить команды, доступные на уровне User EXEC, нужно ввести знак вопроса “?”, в меню Switch. Другое использование контекстно-зависимой справки - отображать список команд или ключевых слов, которые начинаются с определенного символа или символов. После ввода последовательности символов, если знак вопроса сразу вводится без пробела, IOS отобразит список команд или ключевых слов для этого контекста, которые начинаются с введенных символов. Например, можно ввести sh? для получения списка команд, начинающихся с sh. И еще один тип контекстно-зависимой справки используется для определения того, какие параметры, ключевые слова или аргументы сопоставляются с определенной командой. При вводе команды введите пробел, за которым следует символ “?” определить, что может или должно быть введено дальше. Например: Switch# cl clear clock Switch# clock set ? hh:mm:ss Current Time Switch# clock set 13:30:00 ? <1-31> Day of the month MONTH Month of the year Switch# clock set 13:30:00 21 February 2018 ? Switch# clock set 13:30:00 21 February 2018 Проверка синтаксиса команд Когда команда отправляется нажатием клавиши Enter, интерпретатор командной строки анализирует команду слева направо, чтобы определить, какое действие запрашивается. Обычно IOS обеспечивает только отрицательную обратную связь, если что-то было введено неверно. Если интерпретатор не может понять введенную команду, он предоставит информацию о том, что не так с командой. Двойственная команда (Ambiguous command) – введено недостаточно символов для, чтобы система распознала команду. Switch# c % Ambiguous command:’c’ Неполная команда (Incomplete command) – не все необходимые ключевые слова или аргументы были введены. Switch# clock set % Incomplete command. Неверная команда (Invalid input) – команда введена некорректно. Ошибка произошла в месте, на которое указывает маркер Switch#clok set 13:30:00 21 February 2018                 ^ %Invalid input detected at ‘^’ marker. Горячие клавиши и сочетания клавиш В CLI IOS есть возможность использовать горячие клавиши и сочетания клавиш, которые облегчают использование системы. Рассмотрим наиболее полезные из них: Стрелка вниз - позволяет прокручивать строку вперед по введенным командам Стрелка вверх – Позволяет прокручивать строку назад по введенным командам Tab - завершает оставшуюся часть частично введенной команды или ключевого слова Ctrl-A - переход к началу строки Ctrl-E - перемещение в конец строки Ctrl-R – повторное отображение строки Ctrl-Z - Выход из режима конфигурации и возврат к User EXEC Ctrl-C - выход из режима конфигурации или прерывание текущей команды Ctrl-Shift-6 - Позволяет пользователю прерывать процесс IOS, такой как ping или traceroute Рассмотрим их подробнее. Tab Клавиша Tab используется для завершения оставшейся части сокращенной команды и параметра, если аббревиатура содержит достаточно букв, чтобы отличаться от любых других доступных в данный момент команд или параметров. Когда для ввода уникальной команды или ключевого слова было введено достаточно символов, нужно нажать Tab, и CLI отобразит остальную часть команды или ключевого слова. Ctrl-R Повторное отображение строки обновит только что напечатанную строку. Например, IOS может отобразить сообщение в CLI во время набора команды пользователем. Ctrl-R можно использовать для обновления строки и избегать повторного ее ввода. Ctrl-Z Выход из режима конфигурации выйдет из любого режима конфигурации и вернется в привилегированный режим EXEC. Поскольку IOS имеет иерархическую структуру, вместо того, чтобы выходить из каждого подрежима отдельно, можно использовать Ctrl-Z, привилегированный режим EXEC. Стрелки вверх и вниз При помощи стрелок можно отображать историю введенных команд. Cisco IOS выполняет буферизацию нескольких прошлых команд и символов, чтобы записи могли быть снова отображены. Буфер полезен для повторного ввода команд без повторного набора. Ctrl-Shift-6 Эта последовательность прерывает любой выполняющийся процесс. Когда процесс IOS инициируется из CLI, например, ping или traceroute, команда работает до тех пор, пока не будет завершена или не будет прервана. Пока процесс выполняется, CLI не отвечает. Чтобы прервать вывод и взаимодействовать с CLI, нужно нажать Ctrl-Shift-6. Ctrl-C Прерывает ввод команды и выходит из режима конфигурации. Это может быть полезно после ввода команды, которая должна быть отменена. Сокращенные команды или ключевые слова Команды и ключевые слова могут быть сокращены до минимального количества символов, которые идентифицируют уникальный выбор. Например, команда configure может быть сокращена до conf, поскольку configure является единственной командой, которая начинается с conf. Аббревиатура con не будет работать, потому что более чем одна команда начинается с con. Ключевые слова также могут быть сокращены. Пример: Switch# show interfaces Switch# sh int
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59