По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
NoSQL СУБД, или нереляционные базы данных, обладают уникальными возможностями, которые компенсируют ограничения моделей реляционных баз. Нереляционные СУБД – это общее название для 4 основных подгрупп: базы данных типа «ключ-значение» колоночные базы данных графовые базы данных документные базы данных В этой статье мы расскажем о том, что такое документная база данных, опишем ее плюсы и минусы, а также рассмотрим примеры. Документная база данных Документная (или документоориентированная) база данных – это тип нереляционных СУБД, который хранит данные не в столбцах и строках, а в виде документов JSON. JSON является нативным языком, используемым для хранения и запросов данных. Такие документы можно сгруппировать в коллекции, которые образуют системы баз данных. Каждый документ состоит из нескольких пар «ключ-значение». Ниже приведен пример документа из 4 пар «ключ-значение»: { "ID" : "001", "Book" : "Java: The Complete Reference", "Genre" : "Reference work", "Author" : "Herbert Schildt", } JSON позволяет разработчикам приложений хранить и запрашивать данные в том же формате документной модели, который используется ими для структурирования кода приложений. Объектную модель можно преобразовать в такие форматы, как JSON, BSON и XML. Сравнение реляционной и документной базы данных Реляционная система управления базами данных (РСУБД) основана на языке структурированных запросов (SQL). Для нереляционных баз они не нужны. РСУБД занимается созданием связей между файлами для хранения и считывания данных. Документные базы данных ориентированы на сами данные, а связи между ними представлены в виде вложенных данных. Ключевое сравнение реляционных и документных баз данных: РСУБД   Система документных баз данных Выстроена вокруг концепции о связях Сосредоточена на данных, а не связях Структурирует данные в кортежи (или строки) Вместо строк в документах имеются свойства без теоретических определений. Определяет данные (образует связи) через ограничения и внешние ключи (например, дочерняя таблица ссылается на основную таблицу через ее идентификатор). Для определения схем не нужен язык DDL. Для создания связей использует язык DDL (язык описания данных). Вместо внешних ключей связи реализованы через вложенные данные (в одном документе могут содержаться другие, вложенные в него, документы, из-за чего между двумя сущностями документов формируется связь 1 ко многим (или многие к одному)). Обеспечивает исключительную согласованность. В некоторых случаях она просто необходима (например, ежедневные банковские операции). Обеспечивает согласованность в конечном счете (с периодом несогласованности). Особенности документной базы данных Документные базы данных обеспечивают быстрые запросы, структуру, которая отлично подходит для обработки больших данных, гибкое индексирование и упрощенный принцип поддержания баз данных. Такая СУБД эффективна для веб-приложений и была полностью интегрирована крупными ИТ-компаниями уровня Amazon. Несмотря на то, что базы данных SQL могут похвастаться отличной стабильность и вертикальной структурой, им свойственна «тяжеловесность» данных. В сценариях использования, когда требуется моментальный доступ к данным (например, медицинские приложения), лучше выбирать документные базы данных. Так вы сможете легко запрашивать данные в той же модели документа, в которой писался код приложения. Примеры использования документной базы данных База данных «Книга» Для создания баз данных «Книга» используются как реляционные, так и нереляционные СУБД, хотя и по-разному. В реляционных СУБД связи между книгами и авторами выражаются через таблицы с идентификаторами ID: таблица Author (Автор) и таблица Books (Книги). Данная модель не допускает пустых значений, поэтому за каждым «Автором» должна быть закреплена как минимум одна запись в таблице «Книги». В документной модели вы можете вкладывать данные. Такая модель показывает взаимосвязи проще и естественнее: в каждом документе с авторами есть свойство Books с массивом связанных документов «Книги». При поиске по автору отображается вся коллекция книг. Управление содержимым Разработчики пользуются документными базами данных для создания блогов, платформ с потоковыми видео и аналогичных сервисов. Каждый файл сохраняется в виде отдельного документа, и со временем, по мере разрастания сервиса, такую базу легче поддерживать. На значимые изменения в данных (как, например, изменения модели данных) не требуется простоя, поскольку им не нужно обновление схемы. Каталоги Когда дело касается хранения и чтения файлов каталога, документные базы данных оказываются в разы эффективнее реляционных СУБД. В каталогах могут храниться тысячи атрибутов, а документная база данных обеспечивает их быстрое считывание. В документных базах данных атрибуты, связанные с одним продуктом, хранятся в одном документе. Изменение атрибутов в одном из продуктов не влияет на другие документы. Плюсы и минусы документной базы данных Ниже представлены главные плюсы и минусы документной базы данных: Плюсы документной БД Минусы документной БД  Отсутствие схемы Ограничения по проверке на согласованность Быстрое создание и обслуживание Проблемы с атомарностью Отсутствие внешних ключей Безопасность Открытые форматы Встроенное управление версиями Плюсы Отсутствие схемы. Нет ограничений по формату и структуре хранилищ данных. Это хорошо для сохранения существующих данных в больших объемах и разных структурных состояниях, особенно в непрерывно преобразующихся системах. Быстрое создание и обслуживание. Как только вы создали документ, ему требуется лишь минимальная поддержка – она может оказаться не сложнее разового добавления вашего сложного объекта. Отсутствие внешних ключей. Когда эта динамика связей отсутствует, документы становятся независимыми друг от друга. Открытые форматы. Чистый процесс сборки, в котором для описания документов используется XML, JSON и другие производные. Встроенное управление версиями. По мере того, как увеличивает размер ваших документов, повышается и их сложность. Управление версиями уменьшает количество конфликтов. Минусы Ограничения по проверке на согласованность. В примере с базой данных «Книга» можно искать книги по несуществующему автору. При поиске по коллекциям книг вы можете находить документы, не связанные с коллекцией авторов. Кроме того, в каждом списке для каждой книги может дублироваться информация об авторе. В некоторых случаях такая несогласованность не особо важна. Но при более высоких стандартах непротиворечивости РСУБД несогласованность серьезно снижает производительность баз данных. Проблемы с атомарностью. Реляционные системы позволяют изменять данные из одного места без использования JOIN. Все новые запросы на чтение унаследуют изменения, внесенные в данные по одной команде (например, обновление или удаление строки). Для документных баз данных изменение, затрагивающее 2 коллекции, выполняется через 2 отдельных запроса (по одному на коллекцию). Это нарушает требования к атомарности. Безопасность. Почти в половине современных веб-приложений отмечается активная утечка конфиденциальных данных. Поэтому владельцам нереляционных баз данных следует быть крайне внимательными к уязвимостям веб-приложения. Лучшие документные базы данных Amazon DocumentDB Особенности: совместимость с MongoDB; полная управляемость; высокая производительность с низкой задержкой запросов; строгое соответствие требованиям и безопасность; высокая доступность. Как используется: Вся команда разработки Amazon пользуется Amazon DocumentDB для повышения оперативности и продуктивности. Им нужны были вложенные индексы, агрегирование, ad-hoc запросы (запросы узкой специализации), а также полностью управляемый процесс. BBC использует документные БД для запросов и хранения данных из нескольких потоков данных с компиляцией их в единый канал для клиентов. Они перешли на Amazon DocumentDB, чтобы получить полностью управляемы сервис с высокой доступностью, прочностью и резервным копированием по умолчанию. Rappi выбрали Amazon DocumentDB для сокращения времени на написание кода, Dow Jones – для упрощения операций, а Samsung – для более гибкой обработки больших журналов. MongoDB Особенности: ad-hoc запросы; оптимизированное индексирование для запросов; сегментирование; балансировка нагрузки. Как используется: Forbes сократил время компоновки на 58%, получив прирост в 28% по количеству подписок, за счет более быстрого создания новых функций, более простого объединения и более качественной обработки разнообразных типов данных. Toyota заметила, что разработчикам было проще работать с документными БД на больших скоростях за счет использования нативных JSON-документов. Больше времени тратилось на создание ценности бизнеса, а не на моделирование данных. Cosmos DB Особенности: быстрое чтение в любом масштабе; 99,999% доступность; полная управляемость; NoSQL/Native Core API; бессерверное, экономичное/мгновенное масштабирование. Как используется: Coca-Cola получает информацию за минуты, что способствует глобальному масштабированию. До перехода на Cosmos DB на это уходили часы. ASOS искали распределенную базу данных, которая легко и гибко масштабируется для обслуживания 100+ миллионов розничных клиентов по всему миру. ArangoDB Особенности: валидации схем; разноплановое индексирование; быстрые распределенные кластеры; эффективность с большими наборами данных; поддержка многих нереляционных моделей данных; объединение моделей в единые запросы. Как используется: Оксфордский университет разработал онлайн-тестирование на сердечно-легочные заболевания, благодаря чему снизил посещаемость больниц и усовершенствовал результаты анализов. FlightStats привел к единому стандарту разрозненную информацию о полетах (статус рейса, погодные условия, задержки в аэропорту, справочные данные), что позволило получить точные, прогнозирующие и аналитические результаты. Couchbase Server Особенность: возможность управления глобальными развертываниями; крайняя гибкость и адаптивность; быстрота в крупных масштабах; простые облачные интеграции. Как используется: BT использовал гибкую модель данных Couchbase для ускорения собственных возможностей по высокопроизводительной поставке контента, а также легкого масштабирования в моменты резкого повышения спроса. eBay перешел от Oracle к более экономичному и функциональному решению (их документной системы/хранилища типа «ключ-значение»). Возросла доступность и производительность приложения, а разработчики могли пользоваться своим опытом в SQL для ускорения пайплайна CI/CD (конвейера сборки) через более гибкую схему. CouchDB Особенности: графический интерфейс на базе браузера; простейшие репликации; аутентификация пользователя; свойства ACID (Атомарность – Согласованность – Изолированность – Прочность). Как используется: Meebo (соцсеть) пользуется CouchDB для веб-интерфейса и его приложений. The BBC выбрал CouchDB за платформы динамического контента Как выбрать? Структуру данных определяют важнейшие требования, предъявляемые к приложению. Вот несколько ключевых вопросов: Вы будете больше читать или записывать? В случае, если вы чаще записываете данные, лучше подойдут реляционные системы, поскольку они позволяют избегать задвоений при обновлениях. Насколько важна синхронизация? Благодаря стандартам ACID, реляционные системы справляются с этой задачей лучше. Насколько сильно потребуется изменять вашу схему базы данных в будущем? Документные БД – это беспроигрышный вариант, если вы работаете с разнообразными данными в масштабе и ищете минимальной поддержки. Нельзя сказать, что документная СУБД или SQL база лучше во всем. Правильный выбор зависит от вашего сценария использования. Принимая решение, подумайте, какие типы операций будут выполняться чаще всего. Заключение В данной статье мы объяснили особенности документной базы данных, поговорили о плюсах и минусах системы, а также рассмотрели сценарии использования. Кроме того, был приведен список лучших документных СУБД и рассказано, как компании из рейтинга Forbes 500 пользуются этими системами для повышения эффективности своей деятельности и процессов разработки.
img
Машинное обучение - это метод анализа данных, который автоматизирует построение аналитической модели. Это отрасль искусственного интеллекта, основанная на идее, что системы могут обучаться на основе данных, выявлять закономерности и принимать решения с минимальным вмешательством человека. Эволюция машинного обучения Из-за новых вычислительных технологий машинное обучение сегодня отличается от машинного обучения в прошлом. Оно основывается на распознавании образов и теории, что компьютеры могут обучаться, не будучи запрограммированы для выполнения конкретных задач; исследователи, интересующиеся искусственным интеллектом, хотели посмотреть, смогут ли компьютеры обучаться, основываясь на базе данных. Итеративный аспект машинного обучения важен, так как модели, подвергающиеся воздействию новых данных, способны самостоятельно адаптироваться. Они учатся от предыдущих вычислений для получения надежных и воспроизводимых решений и результатов. Хотя многие алгоритмы машинного обучения существуют уже давно, способность автоматически применять сложные математические вычисления к объемным данным - снова и снова, все быстрее и быстрее - это новейшая разработка. Вот несколько широко разрекламированных примеров приложений машинного обучения, с которыми вы можете быть знакомы: Сильно раскрученная, самоуправляемая машина Google. Суть машинного обучения. Онлайн рекомендации, такие, как у Amazon и Netflix. Приложения машинного обучения для повседневной жизни. Знание того, что клиенты говорят о вас в соцсетях. Машинное обучение в сочетании с созданием лингвистических правил. Обнаружение мошенничества. Одно из наиболее очевидных, важных применений в современном мире. Почему машинное обучение важно? Возобновление интереса к машинному обучению обусловлено теми же факторами, которые сделали анализ данных и Байесовский анализ более популярными, чем когда-либо. Растущие объемы и разнообразие доступных данных, вычислительная обработка, которая является более дешевой и мощной; доступное хранилище для хранения данных - все эти аспекты означают, что можно быстро и автоматизировано производить модели, которые могут анализировать более объемные и сложные данные и обеспечивать быстрые и более точные результаты - даже на очень больших объемах. А благодаря созданию точных моделей у организации больше шансов определить выгодные возможности или избежать неизвестных рисков. Что необходимо для создания эффективных систем машинного обучения? Возможности подготовки данных. Алгоритмы - базовый и продвинутый. Автоматизация и итерационные процессы. Масштабируемость. Ансамблевое моделирование. Интересные факты В машинном обучении, цель называется - «ярлык». В статистике, цель называется «зависимой переменной». Переменная в статистике называется – «функция в машинном обучении». Преобразование в статистике называется – «создание функции в машинном обучении». Кто использует машинное обучение? Большинство отраслей промышленности, работающих с большими объемами данных признали ценность технологии машинного обучения. Подбирая идеи из этих данных - часто в режиме реального времени - организации способны более эффективно работать или получить преимущество перед конкурентами. Финансовые услуги Банки и другие предприятия финансовой индустрии используют технологию машинного обучения для двух ключевых целей: для выявления важных данных и предотвращения мошенничества. Они могут определить инвестиционные возможности или помочь инвесторам узнать, когда торговать. Интеллектуальный анализ данных может также идентифицировать клиентов с профилями высокого риска или использовать кибер-наблюдение, чтобы точно определить признаки мошенничества. Правительство Правительственные учреждения, такие как общественная безопасность и коммунальные службы, особенно нуждаются в машинном обучении, поскольку у них есть несколько источников данных, из которых можно получить информацию для полного понимания. Например, анализ датчика данных определяет пути повышения эффективности и экономии средств. Машинное обучение также может помочь обнаружить мошенничество и минимизировать кражу личных данных. Здравоохранение Машинное обучение является быстро развивающимся направлением в отрасли здравоохранения, благодаря появлению переносных устройств и датчиков, которые могут использовать данные для оценки состояния здоровья пациента в режиме реального времени. Эта технология также может помочь медицинским экспертам анализировать данные для выявления тенденций или «красных флажков», которые могут привести к улучшению диагностики и лечения. Розничная торговля Веб-сайты, рекомендующие товары, которые могут вам понравиться на основе предыдущих покупок, используют машинное обучение для анализа вашей истории покупок. Ритейлеры полагаются на машинное обучение для сбора данных, их анализа и использования для персонализации процесса совершения покупок, проведения маркетинговой кампании, оптимизации цен, планирования поставок товаров, а также для понимания потребностей клиентов. Нефть и газ Поиск новых источников энергии. Анализ минералов в почве. Прогнозирование неисправности датчика НПЗ. Оптимизация распределения нефти, чтобы сделать ее более эффективной и рентабельной. Количество вариантов использования машинного обучения для этой отрасли огромно - и продолжает расти. Транспорт Анализ данных для определения закономерностей и тенденций является ключевым для транспортной отрасли, которая полагается на повышение эффективности маршрутов и прогнозирование потенциальных проблем для повышения прибыльности. Анализ данных и аспекты моделирования машинного обучения являются важными инструментами для компаний доставки, общественного транспорта и других транспортных организаций. Каковы популярные методы машинного обучения? Двумя наиболее широко распространенными методами машинного обучения являются контролируемое обучение и неконтролируемое обучение, но существуют и другие методы машинного обучения. Вот обзор самых популярных типов. Контролируемое обучение Алгоритмы контролируемого обучения изучаются с использованием маркированных примеров, таких как ввод, в котором известен желаемый результат. Например, единица оборудования может иметь точки данных, помеченные как «F» (ошибка) или «R» (работа). Алгоритм обучения получает набор входных данных вместе с соответствующими правильными выходными данными, а алгоритм обучается путем сравнения своих фактических выходных данных с правильными выходными данными, чтобы найти ошибки. Затем он соответствующим образом модифицирует модель. С помощью таких методов, как классификация, регрессия, прогнозирование и повышение градиента, контролируемое обучение использует шаблоны для прогнозирования значений метки на дополнительных немаркированных данных. Контролируемое обучение обычно используется в приложениях, где исторические данные предсказывают вероятные будущие события. Например, он может предвидеть, когда транзакции по кредитным картам могут быть мошенническими или какой клиент страхования может подать иск. Полуконтролируемое обучение Полуконтролируемое обучение используется для тех же приложений, что и контролируемое обучение. Но для обучения оно использует как помеченные, так и непомеченные данные, как правило, это небольшой объем помеченных данных с большим количеством немеченых данных (поскольку немеченые данные дешевле и требуют меньше усилий для их получения). Этот тип обучения может использоваться с такими методами, как классификация, регрессия и прогнозирование. Полуконтролируемое обучение полезно, когда стоимость, связанная с маркировкой, слишком высока, чтобы учесть полностью помеченный процесс обучения. Ранние примеры этого включают идентификацию лица человека по веб-камере. Неконтролируемое обучение Неконтролируемое обучение используется в отношении данных, которые не имеют исторических меток. Система не сказала «правильный ответ». Алгоритм должен выяснить, что показывается. Цель состоит в том, чтобы исследовать данные и найти некоторую структуру внутри. Неуправляемое обучение хорошо работает на транзакционных данных. Например, он может идентифицировать сегменты клиентов со схожими признаками, которые затем могут обрабатываться аналогично в маркетинговых кампаниях. Или он может найти основные атрибуты, которые отделяют сегменты клиентов друг от друга. Популярные методы включают самоорганизующиеся таблицы, отображение ближайших соседей, кластеризацию k-средств и разложение по сингулярным числам. Эти алгоритмы также используются для сегментирования текстовых тем, рекомендации элементов и резко отличающихся значений данных. Усиленное обучение Усиленное обучение часто используется для робототехники, игр и навигации. Благодаря обучению с подкреплением алгоритм с помощью проб и ошибок обнаруживает, какие действия приносят наибольшее вознаграждение. Этот тип обучения состоит из трех основных компонентов: агент (учащийся или лицо, принимающее решения), среда (все, с чем взаимодействует агент) и действия (что может делать агент). Цель состоит в том, чтобы агент выбирал действия, которые максимизируют ожидаемое вознаграждение в течение заданного периода времени. Агент достигнет цели намного быстрее, следуя хорошей политике. Таким образом, цель усиленного обучения состоит в том, чтобы изучить лучшую политику. Каковы различия между интеллектуальным анализом данных, машинным обучением и глубоким обучением? Хотя все эти методы имеют одну и ту же цель - извлекать идеи, шаблоны и зависимости, которые можно использовать для принятия решений - у них разные подходы и возможности. Сбор данных (Data Mining) Интеллектуальный анализ данных можно рассматривать как набор множества различных методов для извлечения информации из данных. Он может включать традиционные статистические методы и машинное обучение. Интеллектуальный анализ применяет методы из разных областей для выявления ранее неизвестных шаблонов из данных. Он может включать в себя статистические алгоритмы, машинное обучение, анализ текста, анализ временных рядов и другие области аналитики. Интеллектуальный анализ данных также включает изучение, практику хранения и обработки данных. Машинное обучение Основное отличие машинного обучения заключается в том, что, как и в статистических моделях, цель состоит в том, чтобы понять структуру данных - подогнать теоретические распределения к хорошо понятным данным. Таким образом, под статистическими моделями стоит теория, которая математически доказана, но для этого необходимо, чтобы данные также соответствовали определенным строгим гипотезам. Машинное обучение развивалось на основе способности использовать компьютеры для проверки данных на предмет структуры, даже если у нас нет теории о том, как эта структура выглядит. Испытанием модели машинного обучения является ошибка проверки новых данных, а не теоретическое испытание, которое подтверждает нулевую гипотезу. Поскольку машинное обучение часто использует итеративный подход для изучения данных, обучение может быть легко автоматизировано. Передача через данные проходит, пока не будет найден надежный шаблон. Глубокое изучение (Deep learning) Глубокое обучение сочетает в себе достижения в области вычислительной мощности и специальных типов нейронных сетей для изучения сложных моделей больших объемов данных. В настоящее время методы глубокого обучения подходят для идентификации объектов в изображениях и слов в звуках. В настоящее время исследователи стремятся применить эти успехи в распознавании образов для решения более сложных задач, таких как автоматический перевод языка, медицинские диагнозы и множество других важных социальных и деловых проблем. Как это работает? Чтобы получить максимальную отдачу от машинного обучения, вы должны знать, как сочетать лучшие алгоритмы с подходящими инструментами и процессами. Алгоритмы: графические пользовательские интерфейсы помогают создавать модели машинного обучения и реализовывать итеративный процесс машинного обучения. Алгоритмы машинного обучения включают в себя: Нейронные сети Деревья решений Случайные леса Ассоциации и обнаружение последовательности Градиент повышения и расфасовки Опорные векторные машины Отображение ближайшего соседа K-средства кластеризации Самоорганизующиеся карты Методы локальной оптимизации поиска Максимальное ожидание Многомерные адаптивные регрессионные сплайны Байесовские сети Оценка плотности ядра Анализ главных компонентов Сингулярное разложение Смешанные Гауссовские модели Последовательное сопроводительное построение правил Инструменты и процессы: Как мы уже знаем, это не просто алгоритмы. В конечном счете, секрет получения максимальной отдачи от ваших объемных данных заключается в объединении лучших алгоритмов для поставленной задачи с: Комплексным качеством данных и их управлением GUI для построения моделей и процессов Интерактивным исследованием данных и визуализацией результатов модели Сравнением различных моделей машинного обучения для быстрого определения лучшей Автоматизированной оценкой группы для выявления лучших исполнителей Простым развертыванием модели, что позволяет быстро получать воспроизводимые и надежные результаты Интегрированной комплексной платформой для автоматизации процесса принятия решений
img
NoSQL - это общее обозначение принципов, направленные на воплощение механизмов управления базами данных, которые имеют ощутимые отличия от привычных моделей с доступом к информации посредством языка SQL. Если стандартные СУБД воплощают принципы атомарности, изолированности и согласованности, то NoSQL характеризуется гибким состоянием, которое может меняться с течением времени и базовой доступностью для каждого запроса. К особенностям NoSQL можно отнести: Использование любых типов хранилищ Допускается разрабатывать БД без применения схемы Масштабируемость в линейном формате - чем больше процессоров, тем выше производительность Универсальность - большие возможности для хранения и аналитики данных Базы данных на основе NoSQL получают широкое распространение, поскольку помогают создавать повышенное количество разных приложений. Характеристики NoSQL В БД NoSQL можно использовать все модели информации - текст, графика, документ с применением пары ключ-значение. Под термином NoSQL можно встретить разные БД, но есть ряд характеристик, присущих всем без исключения. Не применяется SQL, под которым понимается ANSI SQL DML. Полностью реализовать его не удалось пока еще никому, хотя попытки адаптировать уже встречались. Неструктурированная структура. В отличие от реляционных БД NoSQL не имеет стандартной структуры. Здесь можно добавлять поля в любых местах без изменения общего вида данных. Информация представляется в виде агрегатов. БД NoSQL использует данные как целостные объекты, а не как часть общей информации. Распределение происходит без совместных ресурсов. При использовании принципов NoSQL представление данных может проводиться разными способами. Вот несколько самых распространенных типов: Ключ-знание - распространенный способ отражения данных. Методика чаще используется для хранения графических сведений Столбцы - хранение в виде матрицы, в которой каждая строка и столбец являются ключом. Такие механизмы предназначены для хранения больших объемов информации, а также подходят при наличии счетчиков и ограничений по времени при использовании данных Документированная СУБД подойдет для иерархического расположения сведений, чаще всего реализуется в издательском деле Графовая база подойдет для воплощения социальных сетей, поскольку здесь реализуется большое количество связей Таким образом, NoSQL становится универсальным способом расположения данных и может использоваться практически во всех отраслях. Сравнение NoSQL и стандартных БД В последнее время БД на основе NoSQL стали более популярными. И если ранее при разработке использовались в основном реляционные БД, то сегодня они уже идут вровень. Реляционные БД сегодня используются чаще для строгих транзакций, подходят для определенных алгоритмов и аналитических действий. NoSQL распространяются практически на любые направления и могут использоваться для аналитики неструктурированной информации. Если сравнивать показатели обеих принципов, то реляционные базы характеризуются более жесткими требованиями, повышенной четкостью и рамками исполнения задач. В то время как NoSQL более вариативна, гибко подстраивается под условия задачи и допускает горизонтальное масштабирование при необходимости. Таким образом, нельзя сказать, что однозначно один механизм лучше другого. Сегодня традиционные БД оптимально дополняются базами NoSQL, что значительно расширяет горизонт возможностей.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59