По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Статьи по тематике устранение неисправностей связаны с определенным набором решений проблем. В случае с Linux и Unix полезно иметь некое руководство по доступным инструментам, облегчающим работу по поиску и устранению проблем. Это такой документ, который содержит основные важные команды, позволяющие облегчить жизнь администраторам Linux/Unix при возникновении проблем. Команда "list open files" или команда lsof выглядит достаточно просто, но ее использование в качестве инструмента для устранения неполадок не так очевиден, как кажется на первый взгляд. Например, если у неизвестного процесса открыто несколько файлов, знание того, какие они есть, может помочь определить, является ли процесс легитимным. В первой статье рассмотрим множество вариантов использования команды lsof. Во второй статье рассмотрены рекомендации о том, как исправлять проблемы этим множеством вариаций данной команды. Контрольные вопросы, которые следует задать себе при диагностике проблем, является предметом нашей третьей статьи. Это поможет навести порядок в хаосе, который создают некоторые проблемы. Работа с базами данных Oracle - обычная задача администратора, и немного узнать о них и о том, как тестировать соединения с ними, - ценный инструмент, описанный в четвертой статье. Если проблема связана с подключением, отпадает потребность в вызове администратора баз данных. В завершении нашего руководства приведена статья с инструкциями по командам, необходимым для управления дисками и разбиения их на разделы. Команда lsof Команда lsof - это нечто большее, чем вы можете себе представить. Узнайте обо всех возможностях ее применения для поиска и устранения неполадок. lsof - команда Unix/Linux, которая отображает все открытые файлы или идентифицирует процессы, открытые конкретными файлами. Удобная для оценки безопасности ИС, а также для устранения проблем lsof предлагает широкий спектр параметров, позволяющие использовать её различными способами - иногда даже превосходя команду ps для просмотра процессов и команду netstat для исследования сетевых интерфейсов. Что такое открытые файлы? Для начала давайте рассмотрим, что такое открытые файлы и почему они вам могут быть интересны. Открытые файлы - это файлы, которые использует какой-либо процесс. Этот процесс может быть командой, которую вы выполняете, или приложением, запущенным на сервере, которым вы управляете. Открытые файлы могут включать файлы данных и библиотеки, которые предоставляют общие процедуры. Многие файлы открываются каждый раз, когда вы входите в систему. Вы можете быть удивлены их количеством. Если вам интересно, сколько файлов у вас открыто прямо сейчас, попробуйте эту команду: $ lsof -u admin | wc -l 1715 И если вы когда-нибудь слышали, что для Unix все является файлом, вы, возможно, не слишком удивитесь, узнав, что lsof работает с такими вещами, как сетевые интерфейсы, которые большинство из нас обычно не считают файлами. Почему нам это важно? Иногда появляется необходимость узнать об открытых файлах, потому что вы пытаетесь удалить файл и обнаруживаете, что он уже используется. Может быть, он заполняет ваше дисковое пространство. Вам необходимо узнать, каким файлом какой процесс открыт, чтобы можно было остановить его и очистить файл. В других случаях вам понадобится узнать, что делает неизвестный подозрительный процесс, и только изучение файлов, которые открыл подозрительный процесс, может предоставить ценную информацию. Принцип работы lsof? При применении команды lsof без параметров в терминале выводятся все файлы, которые открыты (используются) в вашей системе. Если вы запустите lsof от своего имени, вы получите длинный список файлов, но выходные данные будут включать в себя множество сообщений об отказе в разрешении - многие из них представляют открытые файлы в файловой системе /proc, которые вам не разрешено видеть. Запустите команду от имени root, и вы увидите больше выходных данных. Что еще интересного? Беглый взгляд на довольно большой справочник lsof отобразит вам, что мы увидели только меньшую ее часть возможностей. lsof имеет обширный список опций. В этой статье мы разберем наиболее полезные. Чтобы начать работу со всеми этими параметрами, вам необходимо о том знать о возможности использования более одной опции. Для этого используйте слово OR. Таким образом, вы получаете список, объединяющий результаты указанных вами параметров. Помимо этого вы можете выбрать вариант, со служебным словом AND. В этом случае ваши опции будут применяться вместе. Другими словами, вы увидите те файлы, процессы и т. д., которые соответствуют всем указанным вами параметрам. Для применения объединения AND, добавьте в свою команду параметр -a. Полезные параметры lsof Примеры использования lsof с параметрами, отображены на скриншотах ниже. Они демонстрируют наиболее полезные вещи, которые вы можете применить с данной командой. На скриншоте ниже lsof, перечисляет все процессы, у которых открыт конкретный файл: На этом скриншоте выводится список всех процессов, у которых есть открытые файлы в определенном каталоге: На этом скриншоте показаны файлы, открытые bash: На этом скриншоте, но с использованием подстроки вместо полного имени процесса: На этом скриншоте перечислены открытые файлы для определенного идентификатора процесса: lsof помогает изучить сетевые подключения: На скриншоте показан пример просмотра портов и/или установленных соединений. Также можно сетевые подключения для одного конкретного источника. Просмотр файлов пользователем На этом скриншоте lsof просматриваем открытые файлы для конкретного пользователя: Для просмотра открытых файлов всех пользователей, кроме определенного (здесь это root), используйте знак ^: Перечислить идентификаторы процессов для процессов, запускаемых конкретным пользователем: $ sudo lsof -t -u froggy 15352 15353 Завершить все процессы, принадлежащие конкретному пользователю: $ sudo kill lsof -t -u froggy Используйте параметр -a для использования оператора AND для объединения ваших опций вместе, помня, что это ограничивает вывод только тем, что соответствует всем указанным условиям:
img
Обеспечение безопасности, как физической, экономической и информационной всегда являлось важной задачей. С течением времени создавались как государственные, так и частные структуры по защите данных. Сегодня степень защищенности любого предприятия, организации, учреждения, является одним из самых ярких показателей эффективности деятельности в любом направлении. С развитием информационных технологий и компьютерной техники, безопасность информации, её защищенность, целостность - становится важным принципом в формировании репутации компании. Степень потерь от разглашения тех или иных государственных и коммерческих тайн, исчисляется не просто в денежном эквиваленте, но и в самом факте нарушения закона. Во многих организациях мероприятиями по защите сведений занимается служба безопасности. Анализируя полученные данные именно эта структура выносит решение о целесообразности взаимодействия с другими организациями или людьми. Информационная безопасность компании. Никаких шуток Наряду с действующими сотрудниками по обеспечению безопасности информации в эту систему интегрированы разнообразные технические устройства, программное обеспечение и комплекс мер по предотвращению утечки данных. Сегодня любое предприятие, так или иначе обладающее значительным объемом информации не видит своё существование без систем видео наблюдения и пропускного режима. Разрабатываются и внедряются системы цифровой обработки шифрованной информации, различные программно-аппаратные комплексы по защите сведений составляющих государственную или коммерческую тайну. Анализируя самые простые ошибки в использовании данных предоставленных для служебного пользования, можно выделить: Открытый доступ к сети интернет со стационарных рабочих компьютеров. Отсутствие антивирусной безопасности. Использование сомнительных сайтов, не отвечающих политики безопасности информации. Подключение к стационарным рабочим компьютерам, других технических средств будь то телефон, планшет, имеющим выход в интернет. Отсутствие систем защиты с использованием паролей. Таким образом, проанализировав состояние защиты информации в любом предприятии необходимо исключить все негативные факторы, которые могут повлечь раскрытие коммерческой и государственной тайны.
img
Буферизация пакетов для работы с перегруженным интерфейсом кажется прекрасной идеей. Действительно, буферы необходимы для обработки трафика, поступающего слишком быстро или несоответствия скорости интерфейса - например, при переходе от высокоскоростной LAN к низкоскоростной WAN. До сих пор это обсуждение QoS было сосредоточено на классификации, приоритизации и последующей пересылке пакетов, помещенных в очередь в этих буферах, в соответствии с политикой. Максимально большой размер буферов кажется хорошей идеей. Теоретически, если размер буфера достаточно велик, чтобы поставить в очередь пакеты, превышающие размер канала, все пакеты в конечном итоге будут доставлены. Однако, как большие, так и переполненные буферы создают проблемы, требующие решения. Когда пакеты находятся в буфере, они задерживаются. Некоторое количество микросекунд или даже миллисекунд добавляется к пути пакета между источником и местом назначения, пока они находятся в буфере, ожидая доставки. Задержка перемещения является проблемой для некоторых сетевых разговоров, поскольку алгоритмы, используемые TCP, предполагают предсказуемую и в идеале небольшую задержку между отправителем и получателем. В разделе активного управления очередью вы найдете различные методы управления содержимым очереди. Некоторые методы решают проблему переполненной очереди, отбрасывая достаточно пакетов, чтобы оставить немного места для вновь поступающих. Другие методы решают проблему задержки, поддерживая небольшую очередь, минимизируя время, которое пакет проводит в буфере. Это сохраняет разумную задержку буферизации, позволяя TCP регулировать скорость трафика до скорости, соответствующей перегруженному интерфейсу. Управление переполненным буфером: взвешенное произвольное раннее обнаружение (WRED) Произвольное раннее обнаружение (RED) помогает нам справиться с проблемой переполненной очереди. Буферы не бесконечны по размеру: каждому из них выделено определенное количество памяти. Когда буфер заполняется пакетами, новые поступления отбрасываются. Это не сулит ничего хорошего для критического трафика, такого как VoIP, от которого нельзя отказаться, не повлияв на взаимодействие с пользователем. Способ решения этой проблемы - убедиться, что буфер никогда не будет полностью заполнен. Если буфер никогда не заполняется полностью, то всегда есть место для приема дополнительного трафика. Чтобы предотвратить переполнение буфера, RED использует схему упреждающего отбрасывания выбранного входящего трафика, оставляя места открытыми. Чем больше заполняется буфер, тем больше вероятность того, что входящий пакет будет отброшен. RED является предшественником современных вариантов, таких как взвешенное произвольное раннее обнаружение (WRED). WRED учитывает приоритет входящего трафика на основе своей отметки. Трафик с более высоким приоритетом будет потерян с меньшей вероятностью. Более вероятно, что трафик с более низким приоритетом будет отброшен. Если трафик использует какую-либо форму оконного транспорта, например, такую как TCP, то эти отбрасывания будут интерпретироваться как перегрузка, сигнализирующая передатчику о замедлении. RED и другие варианты также решают проблему синхронизации TCP. Без RED все входящие хвостовые пакеты отбрасываются при наличии переполненного буфера. Для трафика TCP потеря пакетов в результате отбрасывания хвоста приводит к снижению скорости передачи и повторной передаче потерянных пакетов. Как только пакеты будут доставлены снова, TCP попытается вернуться к более высокой скорости. Если этот цикл происходит одновременно во многих разных разговорах, как это происходит в сценарии с отключением RED-free, интерфейс может испытывать колебания использования полосы пропускания, когда канал переходит от перегруженного (и сбрасывания хвоста) к незагруженному и недоиспользованному, поскольку все д throttled-back TCP разговоры начинают ускоряться. Когда уже синхронизированные TCP-разговоры снова работают достаточно быстро, канал снова становится перегруженным, и цикл повторяется. RED решает проблему синхронизации TCP, используя случайность при выборе пакетов для отбрасывания. Не все TCP-разговоры будут иметь отброшенные пакеты. Только определенные разговоры будут иметь отброшенные пакеты, случайно выбранные RED. TCP-разговоры, проходящие через перегруженную линию связи, никогда не синхронизируются, и колебания избегаются. Использование каналов связи более устойчиво. Управление задержкой буфера, Bufferbloat и CoDel Здесь может возникнуть очевидный вопрос. Если потеря пакетов - это плохо, почему бы не сделать буферы достаточно большими, чтобы справиться с перегрузкой? Если буферы больше, можно поставить в очередь больше пакетов, и, возможно, можно избежать этой досадной проблемы потери пакетов. Фактически, эта стратегия больших буферов нашла свое применение в различных сетевых устройствах и некоторых схемах проектирования сети. Однако, когда перегрузка канала приводит к тому, что буферы заполняются и остаются заполненными, большой буфер считается раздутым. Этот феномен так хорошо известен в сетевой индустрии, что получил название: bufferbloat. Bufferbloat имеет негативный оттенок, потому что это пример слишком большого количества хорошего. Буферы - это хорошо. Буферы предоставляют некоторую свободу действий, чтобы дать пачке пакетов где-нибудь остаться, пока выходной интерфейс обработает их. Для обработки небольших пакетов трафика необходимы буферы с критическим компромиссом в виде введения задержки, однако превышение размера буферов не компенсирует уменьшение размера канала. Канал имеет определенную пропускную способность. Если каналу постоянно предлагается передать больше данных, чем он может передать, то он плохо подходит для выполнения требуемой от него задачи. Никакая буферизация не может решить фундаментальную проблему пропускной способности сети. Увеличение размера буфера не улучшает пропускную способность канала. Фактически, постоянно заполненный буфер создает еще большую нагрузку на перегруженный интерфейс. Рассмотрим несколько примеров, противопоставляющих протоколов Unacknowledged Datagram Protocol (UDP) и Transmission Control Protocol (TCP). В случае VoIP-трафика буферизованные пакеты прибывают с опозданием. Задержка чрезвычайно мешает голосовой беседе в реальном времени. VoIP - это пример трафика, передаваемого посредством UDP через IP. UDP-трафик не подтверждается. Отправитель отправляет пакеты UDP, не беспокоясь о том, доберутся ли они до места назначения или нет. Повторная передача пакетов не производится, если хост назначения не получает пакет UDP. В случае с VoIP - здесь важно, пакет приходит вовремя или нет. Если это не так, то нет смысла передавать его повторно, потому что уже слишком поздно. Слушатели уже ушли. LLQ может прийти вам в голову как ответ на эту проблему, но часть проблемы - это слишком большой буфер. Для обслуживания большого буфера потребуется время, вызывающее задержку доставки трафика VoIP, даже если LLQ обслуживает трафик VoIP. Было бы лучше отбросить VoIP-трафик, находящийся в очереди слишком долго, чем отправлять его с задержкой. В случае большинства приложений трафик передается по протоколу TCP через IP, а не по протоколу UDP. TCP - протокол подтверждений. Отправитель трафика TCP ожидает, пока получатель подтвердит получение, прежде чем будет отправлен дополнительный трафик. В ситуации bufferbloat пакет находится в переполненном, слишком большом буфере перегруженного интерфейса в течение длительного времени, задерживая доставку пакета получателю. Получатель получает пакет и отправляет подтверждение. Подтверждение пришло к отправителю с большой задержкой, но все же пришло. TCP не заботится о том, сколько времени требуется для получения пакета, пока он туда попадает. И, таким образом, отправитель продолжает отправлять трафик с той же скоростью через перегруженный интерфейс, что сохраняет избыточный буфер заполненным и время задержки увеличивается. В крайних случаях отправитель может даже повторно передать пакет, пока исходный пакет все еще находится в буфере. Перегруженный интерфейс, наконец, отправляет исходный буферизованный пакет получателю, а вторая копия того же пакета теперь находится в движении, что создает еще большую нагрузку на уже перегруженный интерфейс! Эти примеры демонстрируют, что буферы неподходящего размера на самом деле не годятся. Размер буфера должен соответствовать как скорости интерфейса, который он обслуживает, так и характеру трафика приложения, который может проходить через него. Одна из попыток со стороны сетевой индустрии справиться с большими буферами, обнаруженными вдоль определенных сетевых путей, - это контролируемая задержка, или CoDel. CoDel предполагает наличие большого буфера, но управляет задержкой пакетов, отслеживая, как долго пакет находится в очереди. Это время известно, как время пребывания. Когда время пребывания пакета превысило вычисленный идеал, пакет отбрасывается. Это означает, что пакеты в начале очереди-те, которые ждали дольше всего-будут отброшены до пакетов, находящихся в данный момент в хвосте очереди. Агрессивная позиция CoDel в отношении отбрасывания пакетов позволяет механизмам управления потоком TCP работать должным образом. Пакеты, доставляемые с большой задержкой, не доставляются, а отбрасываются до того, как задержка станет слишком большой. Отбрасывание вынуждает отправителя TCP повторно передать пакет и замедлить передачу, что очень желательно для перегруженного интерфейса. Совокупный результат - более равномерное распределение пропускной способности для потоков трафика, конкурирующих за интерфейс. В ранних реализациях CoDel поставлялся в устройства потребительского уровня без параметров. Предполагаются определенные настройки по умолчанию для Интернета. Они включают 100 мс или меньше времени двустороннего обмена между отправителями и получателями, а задержка 5 мс является максимально допустимой для буферизованного пакета. Такая конфигурация без параметров упрощает деятельность поставщиков сетевого оборудования потребительского уровня. Потребительские сети являются важной целью для CoDel, поскольку несоответствие высокоскоростных домашних сетей и низкоскоростных широкополосных сетей вызывает естественную точку перегрузки. Кроме того, сетевое оборудование потребительского уровня часто страдает от слишком большого размера буферов.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59