По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этой статье мы рассмотрим процесс установки и настройки режима Docker Swarm на сервере Ubuntu 16.04. Docker Swarm является стандартным инструментом кластеризации для Docker, преобразующий набор хостов Docker в один последовательный кластер, называемый Swarm. Docker Swarm обеспечивает доступность и высокую производительность работы, равномерно распределяя ее по хостингам Docker внутри кластера. Установка Docker Swarm: Перед началом обновите Ваш системный репозиторий до последней версии с помощью следующей команды: sudo apt-get update -y && sudo apt-get upgrade -y После обновления следует выполнить перезагрузку системы. Необходимо еще установить среду Docker. По умолчанию Docker не доступен в репозитории Ubuntu 16.04, поэтому сначала необходимо создать хранилище Docker и начать установку с помощью следующей команды: sudo apt-get install apt-transport-https software-properties-common ca-certificates -y: Добавляем GPG ключ для Docker: wget https://download.docker.com/linux/ubuntu/gpg && sudo apt-key add gpg Добавляем репозиторий Docker и обновляем с помощью команды: sudo echo "deb [arch=amd64] https://download.docker.com/linux/ubuntu xenial stable" >> /etc/apt/sources.list sudo apt-get update -y Установка среды Docker с помощью следующей команды: sudo apt-get install docker-ce -y После установки запустите службу Docker во время загрузки с помощью следующей команды: sudo systemctl start docker && sudo systemctl enable docker Для запуска Docker необходимы root права, а для других юзеров доступ получается только с помощью sudo. При необходимости запустить docker без использования sudo, есть возможность создать Unix и включить в него необходимых пользователей за счет выполнения следующих строк кода: sudo groupadd docker && sudo usermod -aG docker dockeruser Затем выйдя из системы, делаем вход через dockeruser. sudo ufw allow 2376/tcp && sudo ufw allow 7946/udp && sudo ufw allow 7946/tcp && sudo ufw allow 80/tcp && sudo ufw allow 2377/tcp && sudo ufw allow 4789/udp Затем перезагрузите брандмауэр, включив его при загрузке sudo ufw reload && sudo ufw enable Выполните перезагрузку “Докера”: sudo systemctl restart docker Создавая Docker Swarm кластер, необходимо определиться с IP-адресом, за счет которого ваш узел будет действовать в качестве диспетчера: docker swarm init --advertise-addr 192.168.0.103 Вы должны увидеть следующий вывод: Swarm initialized: current node (iwjtf6u951g7rpx6ugkty3ksa) is now a manager. To add a worker to this swarm, run the following command: docker swarm join --token SWMTKN-1-5p5f6p6tv1cmjzq9ntx3zmck9kpgt355qq0uaqoj2ple629dl4-5880qso8jio78djpx5mzbqcfu 192.168.0.103:2377 To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions. Проверяем его состояние: docker node ls Если все работает правильно, вы должны увидеть следующий вывод: ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS iwjtf6u951g7rpx6ugkty3ksa * Manager-Node Ready Active Leader Проверка статуса Docker Swarm Cluster осуществляется следующим образом: code> docker info Вывод должен быть следующим: Containers: 0 Running: 0 Paused: 0 Stopped: 0 Images: 0 Server Version: 17.09.0-ce Storage Driver: overlay2 Backing Filesystem: extfs Supports d_type: true Native Overlay Diff: true Logging Driver: json-file Cgroup Driver: cgroupfs Plugins: Volume: local Network: bridge host macvlan null overlay Log: awslogs fluentd gcplogs gelf journald json-file logentries splunk syslog Swarm: active NodeID: iwjtf6u951g7rpx6ugkty3ksa Is Manager: true ClusterID: fo24c1dvp7ent771rhrjhplnu Managers: 1 Nodes: 1 Orchestration: Task History Retention Limit: 5 Raft: Snapshot Interval: 10000 Number of Old Snapshots to Retain: 0 Heartbeat Tick: 1 Election Tick: 3 Dispatcher: Heartbeat Period: 5 seconds CA Configuration: Expiry Duration: 3 months Force Rotate: 0 Autolock Managers: false Root Rotation In Progress: false Node Address: 192.168.0.103 Manager Addresses: 192.168.0.103:2377 Runtimes: runc Default Runtime: runc Init Binary: docker-init containerd version: 06b9cb35161009dcb7123345749fef02f7cea8e0 runc version: 3f2f8b84a77f73d38244dd690525642a72156c64 init version: 949e6fa Security Options: apparmor seccomp Profile: default Kernel Version: 4.4.0-45-generic Operating System: Ubuntu 16.04.1 LTS OSType: linux Architecture: x86_64 CPUs: 1 Total Memory: 992.5MiB Name: Manager-Node ID: R5H4:JL3F:OXVI:NLNY:76MV:5FJU:XMVM:SCJG:VIL5:ISG4:YSDZ:KUV4 Docker Root Dir: /var/lib/docker Debug Mode (client): false Debug Mode (server): false Registry: https://index.docker.io/v1/ Experimental: false Insecure Registries: 127.0.0.0/8 Live Restore Enabled: false Узел теперь настроен правильно, пришло время добавить его в Swarm Cluster. Сначала скопируйте вывод команды «swarm init» из вывода результата выше, а затем вставьте этот вывод в рабочий узел для присоединения к Swarm Cluster: docker swarm join --token SWMTKN-1-5p5f6p6tv1cmjzq9ntx3zmck9kpgt355qq0uaqoj2ple629dl4-5880qso8jio78djpx5mzbqcfu 192.168.0.103:2377 Вы должны увидеть следующий вывод: This node joined a swarm as a worker. Теперь выполните следующую команду для вывода списка рабочего узла: docker node ls Вы должны увидеть информацию следующего вида: ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS iwjtf6u951g7rpx6ugkty3ksa * Manager-Node Ready Active Leader snrfyhi8pcleagnbs08g6nnmp Worker-Node Ready Active Docker Swarm Cluster запущен и работает, теперь можно запустить веб-сервис в Docker Swarm Mode. За счет следующей строки кода выполнится развертывание службы веб-сервера: docker service create --name webserver -p 80:80 httpd Приведенная выше строка создаст контейнер веб-сервера Apache и сопоставит его с 80 портом, позволив иметь полный доступ к необходимому веб-серверу Apache из удаленной системы. Теперь запускаем проверку работающего сервиса с помощью команды: docker service ls Вы должны увидеть следующий вывод: ID NAME MODE REPLICAS IMAGE PORTS nnt7i1lipo0h webserver replicated 0/1 apache:latest *:80->80/tcp Запустите службу масштабирования веб-сервера с помощью строки: docker service scale webserver = 2 А также проверьте состояние с помощью команды: docker service ps webserver Вы должны увидеть следующий вывод: ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS 7roily9zpjvq webserver.1 httpd:latest Worker-Node Running Preparing about a minute ago r7nzo325cu73 webserver.2 httpd:latest Manager-Node Running Preparing 58 seconds ago Веб-сервер Apache работает. Теперь вы можете получить доступ к веб-серверу: Служба веб-сервера Apache теперь распределена по двум узлам. Docker Swarm обеспечивает доступность вашего сервиса. Если веб-сервер отключается на рабочем узле, то новый контейнер будет запущен на узле менеджера. Для проверки доступности следует остановить службу Docker на рабочем узле: sudo systemctl stop docker Запустите службу веб-сервера с помощью команды: docker service ps webserver Вы должны увидеть следующую информацию: ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS ia2qc8a5f5n4 webserver.1 httpd:latest Manager-Node Ready Ready 1 second ago 7roily9zpjvq \_ webserver.1 httpd:latest Worker-Node Shutdown Running 15 seconds ago r7nzo325cu73 webserver.2 httpd:latest Manager-Node Running Running 23 minutes ago С помощью данной статьи, вы смогли установить и настроить кластер Docker Swarm для ОС Ubuntu 16.04. Теперь вы можете легко масштабировать свое приложение в кластере до тысячи узлов и пятидесяти тысяч контейнеров без существенной потери производительности.
img
В этой серии статей мы обсуждаем темы администрирования RHEV 3.5. RHEV - это решение для виртуализации Red Hat Enterprise Virtualization, основанное на проекте oVirt (open-source Virtualization project). Red Hat Enterprise Virtualization - это комплексное решение управления виртуализацией для виртуализированных серверов и настольных компьютеров. В этой статье мы обсуждаем среду RHEV и базовое использование. RHEV состоит из двух основных компонентов, таких как гипервизор и система управления. RHEV-H - это гипервизор платформы RHEV, который используется для размещения виртуальных машин. В основе его лежит KVM и RHEL. RHEVM - это система управления средой, которая управляет гипервизорами среды. Он также используется для создания, перемещения, изменения и управления виртуальными машинами, размещенными на гипервизорах. Особенности RHEV 3.5 Это решение с открытым исходным кодом основывается на ядре Red Hat Enterprise Linux с технологией гипервизора виртуальной машины на основе ядра (KVM). Поддерживаемый предел до 160 логических процессоров и 4 ТБ для каждого узла и до 160 виртуальных процессоров и до 4 ТБ памяти на виртуальную машину. Интеграция с OpenStack. Поддерживаются ежедневные задачи, такие как автономное перемещение, высокая доступность, кластеризация и т. д. Необходимые условия для использования Мы будем работать на двух узлах: "гипервизоры" и "хосты" с одним менеджером и одним узлом хранения iscsi. Потом мы добавим один IPA-и DNS-сервер в нашу среду. Мы планируем два сценария использования: Физическое использование - реальная среда, поэтому вам понадобится как минимум три или более физических машины. Виртуальное использование - тестовые лаборатории/среда, поэтому вам понадобится одна физическая машина с большими ресурсами, например, процессор i3 или i5 с оперативной памятью 8G или 12G, в дополнение к другому программному обеспечению виртуализации, например Vmware workstation. В этой серии статей мы работаем над вторым сценарием: Physical Host OS : Fedora 21 x86_64 with kernel 3.18.9-200 RHEV-M machine OS : RHEL6.6 x86_64 RHEV-H machines hypervisor : RHEV-H 6.6 Virtualization software : Vmware workstation 11 Virtual Network interface : vmnet3 Network : 11.0.0.0/24 Physical Host IP : 11.0.0.1 RHEV-M machine : 11.0.0.3 В будущих статьях мы добавим дополнительные компоненты, такие как ноды хранения и IPA-сервер, чтобы сделать среду максимально масштабируемой.Для RHEV-M позаботьтесь заранее об: RHEL / CentOS6. 6 x86_64 new минимальная установка (чистая установка). Убедитесь, что система обновлена. Выделен статический IP-адрес. Машине назначено имя и она доступна по FQDN, например Обновите файл файл /etc/hosts с именем хоста и IP-адресом (убедитесь, что имя хоста резолвится). Минимальные требования - 4G для памяти и 25 GB для жесткого диска. Mozilla Firefox 37 - это рекомендуемый браузер для доступа к WUI. Установка Red Hat Enterprise Virtualization Manager 3.5 1. Чтобы получить доступ к пакетам и обновлениям RHEV, вы должны получить бесплатную 60-дневную пробную подписку с официального сайта red hat, используя корпоративную почту отсюда: Red Hat Enterprise Virtualization 60-дневный пробный период Примечние: после 60-дневного периода ваша виртуалка будет работать в нормальном режиме, однако без доступа к обновлениям системы, если таковые появятся. 2. Затем зарегистрируйте свою машину в RHN (Red Hat Network). 3. Далее установим пакет rhevm и его зависимости с помощью yum. [root@rhevm ~]# yum install rhevm 4. Теперь пришло время настроить rhevm, запустив команду "engine-setup", которая проверит состояние rhevm и любые доступные обновления, делая это в интерактивном режиме и задавая вам вопросы следующего характера: Вопросы, связанные с устанавливаемым продуктом Пакеты Конфигурация сети Конфигурация базы данных Конфигурация движка oVirt Конфигурация PKI Конфигурация Apache Конфигурация системы Предварительный просмотр конфигурации Подсказка: предлагаемые значения конфигурации по умолчанию указаны в квадратных скобках; если предлагаемое значение является приемлемым для вас (а чаще всего так и бывает), нажмите Enter, чтобы принять это значение.Выполните команду и понеслась! [root@rhevm ~]# engine-setup 1. Параметры продукта Первое, о чем инсталлятор спросит вас, это установить и настроить движок на том же хосте. В рамках пробной инсталляции оставьте значение по умолчанию (да). Если вы хотите, чтобы прокси-сервер WebSocket был настроен этом же хосте, оставьте значение по умолчанию (да). 2. Пакеты Скрипт проверит наличие любых обновлений. На этом этапе не требуется никакого пользовательского ввода. 3. Конфигурация сети Далее скрипт автоматически настроит iptables. Мы пока не используем DNS, поэтому убедитесь, что имя хоста (как мы и говорили ранее) резолвится, дополнительно проверим /etc/hosts, как мы делали это ранее. 4. Конфигурация базы данных Базой данных по умолчанию для RHEV3.5 является PostgreSQL. У вас есть возможность настроить его на том же хосте или на внешнем. В статье мы будем использовать локальный вариант и пусть скрипт настроит его автоматически. 5. Конфигурация движка oVirt В этом разделе укажите пароль администратора и application mode для вашей инсталляции. Мы укажем Both: 6. Конфигурация PKI RHEVM использует сертификаты для секьюрного подключения к хосту. Здесь указываем organization name для сертификата: 7. Конфигурация Apache Для веб-интерфейса пользователя RHEVM, необходимо установить и настроить веб-сервер Apache. Инсталлятор дает возможность выполнить автоматическую настройку апач - сервера, ее мы и выберем: 8. Конфигурация системы Среда RHEV содержит библиотеку ISO - файлов, в которой вы можете хранить множество ISO ОС - то есть это просто набор исо - файлов (образов) нужных операционных систем. Эта ISO библиотека называется также доменом ISO и этот домен является общей сетевой шарой. Эта шара будет находиться на том же хосте RHEVM и вы смонтировать его вручную или позволить скрипту настроить его автоматически. 9. Предварительный просмотр конфигурации В этом разделе вы увидите все предыдущие настройки и убедитесь, что все в порядке. Заключение Это последний этап, который показывает дополнительную информацию о том, как получить доступ к панели администратора и запускает службы для работы продукта: Подсказка: На этом этапе вы можете получить Warning (предупреждение), если ПО будет не хватать оперативной памяти. Будем честными: для тестовой среды это не очень важно, просто продолжайте работать. Однако на продуктивном контуре надо быть внимательным и прислушиваться к таким предупреждениям. Чтобы открыть веб-интерфейс пользователя RHEVM откройте URL в броузере: http://$your-ip/ovirt-engine Затем выберите Administrator Portal и укажите свои учетные данные пользователя: admin и пароль, который вы ввели во время установки. Нажмите кнопку Login. Обратите внимание, что вкладка hosts пуста, так как мы еще не добавили ни одного хоста/гипервизора в нашу среду.
img
Задержка в сети, или сетевая задержка, - это временная задержка при передаче запросов или данных от источника к адресату в сетевой экосистеме. Давайте посмотрим, как вы можете выявить и устранить задержку в сети.  Любое действие, которое требует использование сети, например, открытие веб-страницы, переход по ссылке, открытие приложения или игра в онлайн-игру, называется активностью. Активность пользователя – это запрос, а время отклика веб-приложения – это время, которое требуется для ответа на этот запрос.  Временная задержка также включает в себя время, которое сервер тратит на выполнение запроса. Таким образом, временная задержка определяется как круговой путь – время для записи, обработки и получения пользователем запроса, где он уже декодируется.  Понятие «низкое значение задержки» относится к относительно недлительным временным задержкам при передаче данных. А вот длительные задержки, или чрезмерные задержки, не слишком приветствуются, так как они ухудшают процесс взаимодействия с пользователем.  Как исправить задержку в сети? На просторах Интернета есть большое количество инструментов и программных средств, которые могут помочь в анализе и устранении неполадок в сети. Некоторые из них платные, некоторые бесплатные. Впрочем, есть инструмент под названием Wireshark – бесплатное приложение с общедоступной лицензией, которое используется для перехвата пакетов данных в режиме реального времени. Wireshark – это самый популярный и самый часто используемый в мире анализатор сетевых протоколов. Это приложение поможет вам перехватывать сетевые пакеты и отображать их детальную информацию. Вы можете использовать эти пакеты для проведения анализа в режиме реального времени или в автономном режиме после того, как сетевые пакеты уже будут перехвачены. Это приложение поможет вам исследовать сетевой трафик под микроскопом, фильтруя и углубляясь в него в попытках найти корень проблемы. Оно помогает с сетевым анализом, и, как следствие, с сетевой безопасностью.  Что может вызывать задержку в сети? Есть несколько основных причин медленного сетевого подключения. Вот некоторые из них: Большая задержка Зависимости приложений Потеря пакетов Перехватывающие устройства Нерациональные размеры окон В данной статье мы рассмотрим каждую из вышеприведенных причин задержки в сети, а также посмотрим, как можно решить эти проблемы с помощью Wireshark. Проверка с помощью Wireshark Большая задержка Понятие «большая задержка» подразумевает время, которое требуется для передачи данных от одной конечной точки к другой. Влияние большой задержки на передачу данных по сети очень велико. На приведенной ниже диаграмме в качестве примера показано время кругового пути при загрузке файла по пути с высокой задержкой. Время задержки кругового пути часто превышает одну секунду, что является недопустимым.  Перейдите к разделу Wireshark Statistics. Выберите опцию TCP stream graph. Выберите Round Trip time graph, чтобы посмотреть, сколько времени необходимо для загрузки файла.  Wireshark используют для расчета времени кругового пути для того, чтобы определить, это ли является причиной плохой работы коммуникационной сети протокола управления передачей (TCP - Transmission Control Protocol). TCP используется для разных целей, например, для просмотра веб-страниц, передачи данных, протокола передачи файлов и многого другого. В большинстве случаев операционную систему можно настроить так, чтобы на каналах с большой задержкой она работала более эффективно, особенно когда хосты используют Windows XP. Зависимости приложений Некоторые приложения имеют зависимости, то есть они зависят от каких-то других приложений, процессов или от обмена данными с хостом. Допустим, что ваше приложение – это база данных, и оно зависит от подключения к другим серверам, которое необходимо для получения элементов базы данных. В таком случае слабая производительность на этих «других серверах» может негативно повлиять на время загрузки локального приложения.  Рассмотрим, например, просмотр веб-страниц при условии, что целевой сервер ссылается на несколько других веб-сайтов. Например, чтобы загрузить главную страницу сайта  www.espn.com , вы должны сначала посетить 16 хостов, которые обеспечивают главную страницу рекламой и наполнением.  На приведенной выше картинке показано окно «HTTP/Load Distribution» в Wireshark. В нем отображается список всех серверов, которые использует главная страница сайта  www.espn.com .  Потеря пакетов Потеря пакетов – это одна из самых часто встречающихся проблем в сети. Потеря пакетов происходит, когда пакеты данных неправильно доставляются от отправителя к получателю через Интернете. Когда пользователь посещает некий веб-сайт и начинает загружать элементы сайта, потерянные пакеты вызывают повторную передачу, что увеличивает скорость загрузки веб-файлов и замедляет при этом общий процесс загрузки.  Более того, потеря пакетов оказывает крайне негативное влияние на приложение, когда оно использует протокол TCP. Когда TCP-соединение обнаруживает потерянный пакет, то скорость передачи данных автоматически снижается, чтобы компенсировать сетевые проблемы.  Потом скорость постепенно восстанавливается до более приемлемого уровня до следующего потерянного пакета, что снова приведет к существенному снижению скорости передачи данных. Загрузка объемных файлов, которая должна была легко проходить по сети, если бы не было потерянных пакетов, теперь заметно страдает от их наличия.  Что это значит – «пакет потерян»? Это неоднозначный вопрос. Если программа работает через протокол TCP, то потеря пакетов может быть обнаружена двумя способами. В первом варианте получатель отслеживает пакеты по их порядковым номерам и, таким образом, может обнаружить отсутствующий пакет. В таком случае клиент делает три запроса на этот отсутствующий пакет (двойное подтверждение), после чего он отправляется повторно. Во втором варианте потерянный пакет обнаруживает отправитель, когда понимает, что получатель не подтвердил получение пакета данных, и по истечении времени ожидания отправляет пакет данных повторно.  Wireshark указывает, что произошла перегрузка сети, а многократные подтверждения провоцируют повторную передачу проблематичного трафика, который выделен цветом. Большое количество продублированных подтверждений указывают на то, что пакет(ы) были потеряны, а также на существенную задержку в сети.  Для того, чтобы повысить производительность сети, важно определить точное место потери пакетов. Когда Wireshark обнаружил потерю пакетов, он начинает перемещаться по пути следования пакетов до тех пор, пока не найдет место их потери пакетов. На данный момент мы находимся «у истоков» точки потери пакетов, поэтому знаем, на чем нужно сосредоточиться при отладке.  Перехватывающие устройства Сетевые перехватчики – это связующие устройства, такие как коммутаторы, маршрутизаторы и брандмауэры, которые заняты выбором направления передачи данных. При потере пакетов эти устройства необходимо проверить, потому что они могли стать причиной утери.  Задержка может возникнуть при работе этих связующих устройств. Например, если установлен приоритет трафика, то дополнительная задержка может возникнуть в потоке с низким уровнем приоритета.  Неэффективные размеры окон Вдобавок к операционной системе Windows, в сетях TCP/IP есть и другие «окна». Скользящее окно Окно получателя Окно отслеживания перегрузок сети Все эти окна совместно отражают производительность сети на основе протокола TCP. Давайте посмотрим, что из себя представляет каждое из этих окон, и определим, как они влияют на пропускную способность сети.  Скользящее окно Скользящее окно используется для широковещательной передачи последующих TCP-сегментов по сети по мере подтверждения данных. Как только отправитель получает подтверждение о том, что получатель получил переданные фрагменты данных, скользящее окно расширяется. До тех пор, пока в сети не обнаружатся потерянные данные, передавать можно достаточно большие объемы данных. При потере пакета скользящее окно сжимается, так как сеть уже не может справиться с таким большим объемом данных.  Окно получателя Окно получателя TCP-стека – это пространство буфера. Когда данные получены, они сохраняются в этом буферном пространстве до тех пор, пока приложение их не перехватит. Окно получателя начинает заполняться, когда приложение не успевает принимать данные, что приводит к сценарию «нулевого окна». Когда получатель объявляет о состоянии «нулевого окна», вся передача данных на хост должна быть остановлена. Пропускная способность падает до нуля. Метод масштабирования окна (RFC 1323) позволяет хосту увеличить размер окна получателя и снизить вероятность наступления сценария «нулевого окна».  На приведенной выше картинке продемонстрирована 32-секундная задержка сетевого соединения из-за сценария «нулевого окна». Окно отслеживания перегрузок сети Окно отслеживания перегрузок сети определяет максимально возможный объем данных, с которым может справиться сеть. На это значение влияют следующие факторы: скорость передачи пакетов отправителя, количество потерянных пакетов в сети и размер окна получателя. В процессе корректной работы сети окно постоянно увеличивается до тех пор, пока передача данных не завершится или пока она не достигнет «потолка», установленного работоспособностью сети, возможностями передачи отправителя или размером окна получателя. Каждое новое соединение запускает процедуру согласования размера окна заново.  Рекомендации для хорошей работоспособности сети Изучите, как можно использовать Wireshark в качестве меры первой помощи, чтобы можно было быстро и эффективно находить источник низкой производительности Определите источник задержки в сети и по возможности сократите ее до приемлемого уровня Найдите и устраните источник потери пакетов Проанализируйте размер окна передачи данных и по возможности уменьшите его Проанализируйте производительность перехватывающих устройств для того, чтобы посмотреть, увеличивают ли они задержку или, возможно, отбрасывают пакеты Оптимизируйте приложение, чтобы оно могло передавать большие объемы данных и, если это возможно, извлекать данные из окна получателя  Заключение В данной статье мы рассмотрели самые основные причины проблем с производительностью сети. Но есть один немаловажный фактор, который просто нельзя упускать, - это непонимание того, как работает передача данных по сети. Wireshark предоставляет визуализацию сети так же, как рентген или компьютерная томография, которая предоставляет визуализацию человеческого тела для точной и быстрой диагностики. Wireshark стал критически важным инструментом, который способен помочь в обнаружении и диагностике проблем в сети.  А теперь проверьте и устраните проблемы с производительностью своей сети с помощью нескольких фильтров и инструментов Wireshark.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59