По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В статье рассматриваются примеры протоколов, обеспечивающих Interlayer Discovery и назначение адресов. Первую часть статьи про Interlayer Discovery можно прочитать тут. Domain Name System DNS сопоставляет между собой человекочитаемые символьные строки, такие как имя service1. exemple, используемый на рисунке 1, для IP-адресов. На рисунке 3 показана основная работа системы DNS. На рисунке 3, предполагая, что нет никаких кэшей любого вида (таким образом, весь процесс проиллюстрирован): Хост A пытается подключиться к www.service1.example. Операционная система хоста проверяет свою локальную конфигурацию на предмет адреса DNS-сервера, который она должна запросить, чтобы определить, где расположена эта служба, и находит адрес рекурсивного сервера. Приложение DNS операционной системы хоста отправляет DNS-запрос на этот адрес. Рекурсивный сервер получает этот запрос и - при отсутствии кешей - проверяет доменное имя, для которого запрашивается адрес. Рекурсивный сервер отмечает, что правая часть имени домена именуется example, поэтому он спрашивает корневой сервер, где найти информацию о домене example. Корневой сервер возвращает адрес сервера, содержащий информацию о домене верхнего уровня (TLD) example. Рекурсивный сервер теперь запрашивает информацию о том, с каким сервером следует связаться по поводу service1.example. Рекурсивный сервер проходит через доменное имя по одному разделу за раз, используя информацию, обнаруженную в разделе имени справа, чтобы определить, какой сервер следует запросить об информации слева. Этот процесс называется рекурсией через доменное имя; следовательно, сервер называется рекурсивным сервером. Сервер TLD возвращает адрес полномочного сервера для service1.example. Если информация о местонахождении службы была кэширована из предыдущего запроса, она возвращается как неавторизованный ответ; если фактический сервер настроен для хранения информации об ответах домена, его ответ является авторитетным. Рекурсивный сервер запрашивает информацию о www.service1.example у полномочного сервера. Авторитетный сервер отвечает IP-адресом сервера B. Рекурсивный сервер теперь отвечает хосту A, сообщая правильную информацию для доступа к запрошенной службе. Хост A связывается с сервером, на котором работает www.service1.example, по IP-адресу 2001:db8:3e8:100::1. Этот процесс может показаться очень затяжным; например, почему бы просто не сохранить всю информацию на корневом сервере, чтобы сократить количество шагов? Однако это нарушит основную идею DNS, которая заключается в том, чтобы держать информацию о каждом домене под контролем владельца домена в максимально возможной степени. Кроме того, это сделало бы создание и обслуживание корневых серверов очень дорогими, поскольку они должны были бы иметь возможность хранить миллионы записей и отвечать на сотни миллионов запросов информации DNS каждый день. Разделение информации позволяет каждому владельцу контролировать свои данные и позволяет масштабировать систему DNS. Обычно информация, возвращаемая в процессе запроса DNS, кэшируется каждым сервером на этом пути, поэтому сопоставление не нужно запрашивать каждый раз, когда хосту необходимо достичь нового сервера. Как обслуживаются эти таблицы DNS? Обычно это ручная работа владельцев доменов и доменов верхнего уровня, а также пограничных провайдеров по всему миру. DNS не определяет автоматически имя каждого объекта, подключенного к сети, и адрес каждого из них. DNS объединяет базу данных, обслуживаемую вручную, с распределением работы между людьми, с протоколом, используемым для запроса базы данных; следовательно, DNS попадает в базу данных сопоставления с классом протоколов решений. Как хост узнает, какой DNS-сервер запрашивать? Эта информация либо настраивается вручную, либо изучается с помощью протокола обнаружения, такого как IPv6 ND или DHCP. DHCP Когда хост (или какое-либо другое устройство) впервые подключается к сети, как он узнает, какой IPv6-адрес (или набор IPv6-адресов) назначить локальному интерфейсу? Одним из решений этой проблемы является отправка хостом запроса в какую-либо базу данных, чтобы определить, какие адреса он должен использовать, например DHCPv6. Чтобы понять DHCPv6, важно начать с концепции link local address в IPv6. При обсуждении размера адресного пространства IPv6, fe80:: / 10 был назван зарезервированным для link local address. Чтобы сформировать link local address, устройство с IPv6 объединяет префикс fe80:: с MAC (или физическим) адресом, который часто форматируется как адрес EUI-48, а иногда как адрес EUI-64. Например: Устройство имеет интерфейс с адресом EUI-48 01-23-45-67-89-ab. Этот интерфейс подключен к сети IPv6. Устройство может назначить fe80 :: 123: 4567: 89ab в качестве link local address и использовать этот адрес для связи с другими устройствами только в этом сегменте. Это пример вычисления одного идентификатора из другого. После того, как link local address сформирован, DHCP6 является одним из методов, который можно использовать для получения уникального адреса в сети (или глобально, в зависимости от конфигурации сети). DHCPv6 использует User Datagram Protocol (UDP) на транспортном уровне. Рисунок 4 иллюстрирует это. Хост, который только что подключился к сети, A, отправляет сообщение с запросом. Это сообщение поступает с link local address и отправляется на multicast address ff02 :: 1: 2, порты UDP 547 (для сервера) и 546 (для клиента), поэтому каждое устройство, подключенное к одному и тому же физическому проводу, получит сообщение. Это сообщение будет включать уникальный идентификатор DHCP (DUID), который формирует клиент и использует сервер, чтобы обеспечить постоянную связь с одним и тем же устройством. B и C, оба из которых настроены для работы в качестве серверов DHCPv6, отвечают рекламным сообщением. Это сообщение является одноадресным пакетом, направленным самому A с использованием link local address, из которого A отправляет запрашиваемое сообщение. Хост A выбирает один из двух серверов, с которого запрашивать адрес. Хост отправляет запрос на multicast address ff02 :: 1: 2, прося B предоставить ему адрес (или пул адресов), информацию о том, какой DNS-сервер использовать, и т. д. Сервер, работающий на B, затем отвечает ответом на изначально сформированный link local address A; это подтверждает, что B выделил ресурсы из своего локального пула, и позволяет A начать их использование. Что произойдет, если ни одно устройство в сегменте не настроено как сервер DHCPv6? Например, на рисунке 4, что, если D - единственный доступный сервер DHCPv6, потому что DHCPv6 не работает на B или C? В этом случае маршрутизатор (или даже какой-либо другой хост или устройство) может действовать как ретранслятор DHCPv6. Пакеты DHCPv6, которые передает A, будут приняты ретранслятором, инкапсулированы и переданы на сервер DHCPv6 для обработки. Примечание. Описанный здесь процесс называется DHCP с отслеживанием состояния и обычно запускается, когда в объявлении маршрутизатора установлен бит Managed. DHCPv6 может также работать с SLAAC, для предоставления информации, которую SLAAC не предоставляет в режиме DHCPv6 без сохранения состояния. Этот режим обычно используется, когда в объявлении маршрутизатора установлен бит Other. В тех случаях, когда сетевой администратор знает, что все адреса IPv6 будут настроены через DHCPv6, и только один сервер DHCPv6 будет доступен в каждом сегменте, сообщения с объявлением и запросом можно пропустить, включив быстрое принятие DHCPv6. А теперь почитайте про Address Resolution Protocol - протокол разрешения IPv4-адресов
img
Всем привет! Сегодня в статье мы поговорим про настройку PLAR (Private Line Automatic Ring-down) в Cisco Unified Communications Manager (CUCM) . PLAR (или как его иногда называют Hotdial) является функцией которая позволяет телефону вызывать определенный заданный номер, как только будет поднята телефонная трубка. Она может быть полезна для телефонов, размещенных в общественных зонах, например на ресепшене, когда человек, поднявший трубку будет сразу соединен с секретарем. Настройка Для того чтобы телефон автоматически набирал заданный номер необходимо сконфигурировать CSS и Partition, который содержит Translation Pattern. Сначала создадим partition, для этого в Cisco Unified CM Administration переходим во вкладку Call Routing → Class of Control → Partition и нажимаем Add New. Тут указываем название и нажимаем Save. Далее переходим во вкладку Call Routing → Class of Control → Calling Search Space и нажимаем Add New, для создания нового CSS. Тут указываем имя в поле Name, и из поля Available Partitions переносим созданный нами Partition в поле Selected Partition. Делаем это при помощи нажатия клавишу со стрелкой вниз, и сохраняем все, нажав на Save. Теперь настроим Translation Pattern. Переходим во вкладку Call Routing → Translation Pattern и снова нажимаем Add New. Тут указываем созданные нами Partition и CSS, а в поле Called Party Transformation Mask указываем номер, на который должны поступать звонки. Поле Transformation Pattern оставляем пустым. Наконец настроим сам телефон с PLAR. Находим нужный нам телефон во вкладке Device → Phone и в поле Device Information в строке Calling Search Space указываем созданный нами CSS. После этого нужно перейти в меню настройки DN, нажав Line [1] и также указать CSS в строке Calling Search Space Настройки для SIP телефонов Если наши телефоны работают по протоколу сигнализации SIP, то нам для настройки PLAR нужно выполнить следующие дополнительные действия. Нужно создать SIP Dial Rule. Это можно сделать, перейдя в меню Call Routing → Dial Rules → SIP Dial Rules нажав Add New. Сначала необходимо в выпадающем меню выбрать “7940_7960 Other”, а в следующем меню указать имя для правила. После этого в открывшемся окне в строке Pattern Description указываем название и нажимаем Add Plar. После этого паттерн появляется в поле Pattern Information. В этом поле в выпадающем меню Dial Parameter указываем Button, а в параметре Value номер линии на телефоне, на котором будет PLAR. Затем переходим в настройки SIP телефона во вкладке Device – Phone и в поле Protocol Specific Information в строке SIP Dial Rules выбираем созданное нами правило. Теперь при поднятии трубки на настроенном телефоне сразу будет набираться номер, который мы указали в Translation Pattern.
img
Команда ping - это сетевой инструмент для проверки работоспособности удаленной системы. Другими словами, команда определяет, доступен ли определенный IP-адрес или хост. Ping использует протокол сетевого уровня, называемый Internet Control Message Protocol (ICMP), и доступен во всех операционных системах. С другой стороны, номера портов принадлежат протоколам транспортного уровня, таким как TCP и UDP. Номера портов помогают определить, куда пересылается Интернет или другое сетевое сообщение, когда оно приходит. В этом руководстве вы узнаете, как проверить связь с портом в Windows и Linux с помощью различных инструментов. Можно ли пропинговать конкретный порт? Сетевые устройства используют протокол ICMP для отправки сообщений об ошибках и информации о том, успешна ли связь с IP-адресом. ICMP отличается от транспортных протоколов, поскольку ICMP не используется для обмена данными между системами. Ping использует пакеты ICMP, а ICMP не использует номера портов, что означает, что порт не может быть опрошен. Однако мы можем использовать ping с аналогичным намерением - чтобы проверить, открыт порт или нет. Некоторые сетевые инструменты и утилиты могут имитировать попытку установить соединение с определенным портом и ждать ответа от целевого хоста. Если есть ответ, целевой порт открыт. В противном случае целевой порт закрывается или хост не может принять соединение, потому что нет службы, настроенной для прослушивания подключений на этом порту. Как пропинговать определенный порт в Linux? Вы можете использовать три инструмента для проверки связи порта в Linux: Telnet Netcat (NC) Network Mapper (nmap) Пинг определенного порта с помощью Telnet Telnet - это протокол, используемый для интерактивной связи с целевым хостом через соединение виртуального терминала. 1. Чтобы проверить, установлен ли уже telnet, откройте окно терминала и введите: telnet 2. Если telnet не установлен, установите его с помощью следующей команды Для CentOS/Fedora: yum -y install telnet Для Ubuntu: sudo apt install telnet 3. Чтобы пропинговать порт с помощью telnet, введите в терминале следующую команду: telnet [address] [port_number] Где [address] - это домен или IP-адрес хоста, а [port_number] - это порт, который вы хотите проверить. telnet google.com 443 Если порт открыт, telnet устанавливает соединение. В противном случае он указывает на сбой. 4. Чтобы выйти из telnet, нажмите Ctrl +] и введите q. Пинг определенного порта с помощью Netcat Netcat (nc) позволяет устанавливать соединения TCP и UDP, принимать оттуда данные и передавать их. Этот инструмент командной строки может выполнять множество сетевых операций. 1. Чтобы проверить, установлен ли netcat: Для Debian, Ubuntu и Mint: введите netcat -h Для Fedora, Red Hat Enterprise Linux и CentOS: ncat -h 2. Если netcat не установлен, выполните в терминале следующую команду: sudo apt install netcat 3. Чтобы пропинговать порт с помощью netcat, введите следующее: nc -vz [address] [port_number] Выходные данные информируют пользователя об успешном подключении к указанному порту. В случае успеха - порт открыт. Пинг определенного порта с помощью Nmap Nmap - это сетевой инструмент, используемый для сканирования уязвимостей и обнаружения сети. Утилита также полезна для поиска открытых портов и обнаружения угроз безопасности. 1. Убедитесь, что у вас установлен Nmap, введя nmap -version в терминал. Если Nmap установлен, вывод информирует пользователя о версии приложения и платформе, на которой он работает. 2. Если в вашей системе нет Nmap, введите следующую команду: Для CentOS или RHEL Linux: sudo yum install nmap Для Ubuntu или Debian Linux: sudo apt install nmap 3. После установки Nmap в системе используйте следующую команду для проверки связи определенного порта: nmap -p [port_number] [address] Выходные данные информируют пользователя о состоянии порта и типе службы, задержке и времени, прошедшем до завершения задачи. 4. Чтобы проверить связь с более чем одним портом, введите nmap -p [number-range] [address]. Синтаксис [number-range]- это диапазон номеров портов, которые вы хотите пропинговать, разделенные дефисом. Например: nmap -p 88-93 google.com Как пропинговать определенный порт в Windows? Проверить связь с портом в Windows можно двумя способами: Telnet PowerShell Пинг определенного порта с помощью Telnet Перед использованием telnet убедитесь, что он активирован: Откройте панель управления. Щелкните «Программы», а затем «Программы и компоненты». Выберите «Включение или отключение компонентов Windows». Найдите клиент Telnet и установите флажок. Щелкните ОК. Готово! Вы активировали клиент Telnet в системе. После завершения активации можно пропинговать порт с помощью telnet. Для этого: 1. Введите cmd в поиске в меню «Пуск». Щелкните на приложение Командная строка. 2. В окне командной строки введите telnet [address] [port_number] Где [address] - это домен или IP-адрес хоста, а [port_number] - это порт, который вы хотите проверить. Выходные данные позволяют узнать, открыт ли порт и доступен ли он, иначе отображается сообщение об ошибке подключения. Пинг определенного порта с помощью PowerShell PowerShell - это текстовая оболочка, которая по умолчанию поставляется с Windows. Чтобы проверить связь с портом с помощью PowerShell, выполните следующие действия: 1. Введите PowerShell в поиске в меню «Пуск». Щелкните приложение Windows PowerShell. 2. В окне командной строке PowerShell введите: Test-NetConnection [address] -p [port_number] Если порт открыт и соединение прошло успешно, проверка TCP прошла успешно. В противном случае появится предупреждающее сообщение о том, что TCP-соединение не удалось. Заключение Теперь вы знаете, как выполнить эхо-запрос и проверить, открыт ли порт, с помощью нескольких сетевых инструментов и утилит в Linux и Windows.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59