По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В больших корпоративных сетях могут использоваться несколько протоколов внутренней маршрутизации. Такая практика часто встречается при слиянии двух компаний. Чтобы компьютеры в одном домене маршрутизации (далее просто «домен») видели хосты в другом домене применятся так называемая редистрибуция. Эта функция позволяет маршрутизатору выбрать маршрут, выученный через один протокол маршрутизации, например, EIGRP и добавить в его в список анонсируемых сетей в другой, например, OSPF. Эта операция выполняется на маршрутизаторах, который смотрят в обе сети и называются точкой редистрибуции (Redistirbution Point). Маршрутизаторы, которые занимаются анонсированием сетей из одного домена в другой используют для этого таблицу маршрутизации. Другими словами, если маршрутизатор не найдет путь до какой-то сети в своей таблице, то он не будет анонсировать его в другой домен. Схема сети Для построения отказоустойчивой сети обычно применяются два или более маршрутизатора, которые занимаются перебросом маршрутной информации с одного домена в другой. В такой ситуации может образоваться так называемая петля маршрутизации. Поясним на рисунке: В данном случае пакеты из маршрутизатор 2, чтобы добраться до сети Х, которая находится в том же домене делает круг через RD1 > R1 > RD2 > Subnet X. Это происходит потому, что маршрут, объявленный RD1 в Домен маршрутизации 2, имеет меньшее административное расстояние (Administrative Distance, AD), чем маршруты, объявленные роутерами из того же домена. Далее рассмотрим в каких случаях возможно такое. Как избежать петель? Один из самых лёгких методов для избегания петель маршрутизации это при добавлении маршрутов из одного домена в другой более высокой метрики. В данном случае маршрутизаторы RD1 и RD2 при анонсировании маршрутов, выученных протоколом RIP в домен OSPF, назначают им метрику 500. И наоборот, из домена OSPF в домен RIP маршруты анонсируются с метрикой 5. Второй способ – это административное расстояние. Любой маршрут, который добавляется в таблицу маршрутизации роутера, сопоставляется с административным расстоянием. Если роутер получил несколько маршрутов в одну и ту же сеть с одной и той же длиной префикса, то в таблицу попадают маршруты с меньшим AD. Маршрутизатор не учитывает метрику. Вместе с этим, AD – это локальное значение для каждого роутера и не объявляется соседним маршрутизаторам. В таблице ниже приведены административные расстояния для всех типов маршрутов на роутерах Cisco. Тип маршрутаАдминистративное расстояниеConnected (подключённый)0Static (Статический)1EIGRP Summary route5eBGP (external BGP)20EIGRP (internal)90IGRP100OSPF110IS-IS115RIP120EIGRP (external)170iBGP (internal BGP)200 Настройки AD по умолчанию для протокола EIGRP при анонсировании маршрутов в OSPF и RIP предотвращают образование петель маршрутизации. На рисунке выше подсеть 172.16.35.0/24 анонсируется через RD1 в домен OSPF. Маршрутизатор R2 в свою очередь анонсирует выученную через external OSPF сеть роутеру RD2. Но RD2 уже выучил маршрут до сети 35.0 через EIGRP, у которого административное расстояние равно 90, что меньше чем AD OSFP, которое равно 110. Таким образом RD2 не добавит маршрут, полученный у R2 с AD 110 в таблицу маршрутизации и соответственно не будет редистрибутировать обратно в EIGRP. Таким образом логику работы маршрутизатора RD2 можно сформулировать следующим образом: RD2 считает маршрут, полученный по EIGRP лучшим, так как у него меньшее административное расстояние, и добавляет его в таблицу маршрутизации. RD2 не будет анонсировать маршрут, полученный через OSPF, так как его нет в таблице маршрутизации. В силу своей специфик, протокол EIGRP также предотвращает образование петель маршрутизации при редистрибуции из OSPF и RIP. Как было указано на таблице выше, внешние маршруты в EIGRP имеют административное расстояние равным 170. В данном случае маршрутизатор RD2 выучил два маршрута в сеть 192.168.11.0/24. Один через R2 в домене OSPF с AD равным 110, второй через R1 в домене EIGRP с административным расстоянием равным 170-ти. Действуя по указанной выше логике, RD2 добавит в таблицу маршрутизации сеть 11.0 выученный у роутера R2 предотвращая таким образом образование петли. Если в случае EIGRP-OSPF, EIGRP-RIP нам удалось без особых усилий предотвратить петлю маршрутизации, то в случае OSPF-RIP всё немного сложнее. Так как OSPF для всех типов маршрутов использует один показатель AD – 110, то при редистрибуции между RIP и OSPF избежать петель удается только изменение административного расстояния протоколов маршрутизации. Делается это командой distance. Для изменения показателя AD для внешних маршрутов, в интерфейсе настройки OSPF прописываем команду distance external ad-value. Значение, указанное параметром должно быть больше, чем у RIP (120). Но не редки случаи, когда в сети работают более двух протоколов маршрутизации. В таких случаях значения AD по умолчанию не помогают. На рисунке ниже сеть 172.20.0.0/16 выучена протоколом EIGRP как внешний через RIP с АР (Административное Расстояние) равным 170. В свою очередь RD1 анонсирует данную сеть в домен OSPF с АР равным 110. RD2 же вместо маршрута с АР 170, полученного из домена EIGRP в таблицу добавляет маршрут с АР 110, полученный из домена OSPF. При таком раскладе маршрутизатор R4 получает два маршрута в одну и ту же сеть с одним и тем же АР. И в случае если метрика RD2 лучше, то R4 отправке пакетов в сеть 172.20 будет использовать более длинный путь. Нужно заметить, что это только в том случае, когда домены расположены именно в указанном порядке. В таких случаях применяется настройка административного расстояния в зависимости от маршрута. Как было указано выше, для изменения АР используется команда distance. Эта команда принимает несколько параметров: distance distance ip-adv-router wc-mask [ acl-number-or-name ] В данной команде обязательным параметром является IP соседнего маршрутизатора. Если IP адрес анонсирующего маршрутизатора совпадёт с указанными в команде, то для маршрутов, полученных от этого соседа данный роутер назначит указанный в команде АР. Рассмотрим указанный случай на практике. Детальная топология сети, показанная выше, указана на рисунке, а конфигурацию можете скачать по ссылке ниже: Скачать файлы конфигрурации Для начала просмотрим с каким АР RD1 выучил маршрут до сети 172.20: Как видим, RD1 добавил в таблицу маршрутизации маршрут, выученный через OSPF, вместо EIGRP, так как АР у OSPF меньше. Теперь изменим поведение маршрутизатора и посмотрим, как это повлияет на таблицу маршрутизации. ip access-list standard match-172-20 permit host 172.20.0.0 router ospf 2 distance 171 1.1.1.1 0.0.0.0 match-172-20 P.S. В GNS скорее всего придётся выключить, затем включить интерфейс, смотрящий в OSPF домен, чтобы изменения применились. В реальной сети всё работает правильно. Поясним, что мы написали выше. Со стандартным списком доступа всё понятно. Команде distance параметром задали 171 – административное расстояние. Затем идет router id маршрутизатора, который анонсирует сеть 172.20. В нашем случае это маршрутизатор RD1. Таким образом, OSPF посмотрит полученный LSA и, если там увидит идентификатор маршрутизатора RD1, а также сеть, которая указана разрешённой в списке доступа, то применит этому маршруту расстояние 171. Отметим, что указанную конфигурацию нужно сделать на всех роутерах, которые занимается распределением маршрутов и для всех сетей их третьего домена.
img
В данной главе рассматриваются вопросы технической диагностики системы автоматического мониторинга ВОЛС, необходимость в которой возникает из-за сложности этой системы. Техническое диагностирование - процесс определения технического состояния изделия с определенной точностью. Цель технического диагностирования это поддержание достаточного уровня надежности. При наступлении отказа диагностирование предполагает обнаружение факта отказа и его локализацию. Система технического диагностирования (СТД) - совокупность средств, осуществляющих измерение количественных значений параметров (диагностических параметров ДП), анализ и обработку результатов измерений по установленным алгоритмам. Техническим средством диагностирования являются автоматические измерительные системы, рассмотренные в главе 2. Одним из основных методов решения задач диагностирования является моделирование объекта технического диагностирования и выделение взаимосвязей в этих моделях. Модель объекта - это формализованная сущность, характеризующая определенные свойства реального объекта в удобной и желательно для инженера в наглядной форме. Существуют аналитические модели, в которых модель строится на основе уравнений, связывающих различные параметры; графоаналитические, основанные на представлении диаграмм (в частности направленных графов) прохождения сигналов; информационные модели представляют собой информационные описания в терминах энтропия, информация и т.п. Чаще всего используемым в практических целях и наиболее наглядным являются функционально-логические модели, которые реализуются различными способами, определяемыми особенностью функциональной схемы диагностируемого изделия. В настоящей работе применяется диагностирование, основанное на функционально-логическом моделировании и реализуемое инженерным способом. В соответствии с решаемой задачей выбирается та или иная "функция предпочтения". В данном случае решается задача поиска неисправности, для которой выбирается W4 функция предпочтения о которой ниже. Разработка алгоритма диагностирования Считаем, что объект диагностирования задан следующей функциональной схемой (рисунок 1). После построения функциональной модели необходимо определить множество возможных состояний объекта, который диагностируется. Общее число состояний при N функциональных элементов при двоичных исходах проверок (1 исправно, 0 неисправно) равно при диагностировании системы 2N - 1. Предполагается, что одновременное появление двух независимых отказов маловероятно, поэтому число сочетаний из N элементов по одному, равно N. Число всех возможных различных состояний аппаратуры, которая диагностируется, одновременно с учетом отказов одного функционального - сводятся в таблицу состояний (матрицу исправностей, матрицу неисправностей и т. п.), которая используется при разработке программы (алгоритма) поиска неисправностей. Матрица состояний строится по следующим правилам: S0 - строка, соответствующая работоспособному состоянию; Sj - строка, соответствующая состоянию в котором оказался j-тый элемент модели. Например, состояние S4 = 0 означает событие, при котором отказал 4-ый четвертый элемент модели; S2 = 0- второй и т.п.). Этому событию соответствует недопустимое значение сигнала Zi, и тогда на пересечении пишется 0. Если любой другой i - й элемент также недопустимое значение Zi, то на пересечении j ой строки и Zi - ого столбца таким же образом записывается "0"; при этом, если значение параметра будет находиться в допуске, то на пересечении пишется "1". Считается, что значения всех внешних входных сигналов xi всегда будут находиться в пределах допуска, а линии связи между элементами абсолютно надежны. Если есть сомнение в надежности линии, то её принимают за функциональный элемент. Транспонируем матрицу (таблица 1). Так как мы осуществляем построение алгоритма поиска неисправности, то первую строку S0, означающее исправное состояние исключаем. Последний столбец функция предпочтения W4, которую установили из следующих соображений. Так как матрица заполнена нулями и единицами, то равенство некоторого ij элемента соответствует тому, отказ i-го элемента влияет на j-ый выходной параметр j-го элемента, если контролировать выходной параметр Zj можно определить, в каком именно состоянии находится i-ый элемент. Следовательно, чем больше "0" в строке Zj матрицы, тем более большое количество информации может нести этот параметр о состоянии объекта, который находится под контролем. Для этого в качестве предпочтительной функции решении данной задачи контроля работоспособности необходимо принимать функцию вида: Где ; - означает количество нулей в I-ой строке матрицы. Если для объекта контроля известны вероятности состояний P(Zi): Также заданы C(Zi) стоимости контроля параметров: Так как строится алгоритм нахождения неисправности, то функция предпочтения будет: где суммы означают количество нулей и единиц соответственно в I-той строке транспонированной матрицы состояний. Значения W4(Zi) для каждой строки приведены в последнем столбце транспонированной матрицы (таблица 3.2). Последовательность решения следующая: 1) Выбираем ту строку, в которой функция предпочтения W4(Zi) минимальна, так как эта строка несет максимальное количество информации, разбивая все возможные состояния объекта на две равные части. 2) Минимально значение для 6,7,13 и 14 строк, т.е. по этому критерию они равнозначны. Для контроля выбираем строку 7. Итог контроля по этому параметру W4(Zi) разбивает матрицу на равные части W4(Z7) - первое разложение: 2.1) Эти состояния не влияют на данный выходной параметр функционального элемента; 2.2) Значения параметра не в допуске, что говорит о неисправности объекта. 3) Дальше аналогично анализируются обе получившиеся части (3-е, 4-е и последующие разложения (как показано на рисунке 6). 4) Процедура продолжается, пока множество N=14 возможных состояний объекта диагностирования не будут разделены на отдельные состояния. Чтобы упорядочить для дальнейшего осколки введём следующее обозначение для каждого конкретного осколка: Где m - номер разбиения; "H" - принимает значение 1 или 0 в зависимости от состояния строки матрицы; n - номер осколка, считая, что осколки всегда располагаются, начиная с "1". Например, обозначение 3«0»6 значит, что это осколок при третьем разбиении для значения "0". (впрочем, "1" всегда соответствуют нечетные значения "n", а «0» - четные) Ниже представлены результаты анализа для принятой конкретной функциональной модели на рисунке 3. Первое разбиение по строке Z7, имеющая W7 = 0 z7, имеющая W7 = 0 В таблице 3.3. представлена матрица (осколок) после первого разбиения для результатов проверки «1», т.е. при введенных обозначениях: 1«1»1. Для второго разбиения взята строка Z11, имеющая меньшее значение функции предпочтения W4 = 1 В таблице 3.4 представлена таблица после первого разбиения с «0»,, т.е. 1«0»,1. Дальше "заливкой" показаны строчки, выбранные для следующих разбиений. Для первого разбиения матрицы взята строка Z11, функция предпочтения которой W4 = 1. S8 S9 S10 S11 S12 S13 S14 W4 z8 0 1 1 1 1 1 1 5 z9 1 0 1 1 1 1 1 5 z10 1 1 0 1 1 1 1 5 z11 1 1 0 0 0 1 1 1 z12 1 1 0 0 0 1 1 1 z13 1 1 0 0 0 0 1 1 z14 1 1 0 0 0 1 0 1 Таблица 3. - 1«1»1 S1 S2 S3 S4 S5 S6 S7 W4 z1 0 1 1 1 1 1 1 5 z2 0 0 0 1 1 1 1 1 z3 1 1 0 1 1 1 1 1 z4 1 1 0 0 0 1 1 1 z5 1 1 0 0 0 1 1 3 z6 1 1 0 0 0 0 1 7 z7 1 1 0 0 0 1 0 7 Таблица 4. - 1«0»1 Матрица после второго разбиения при «1». Для 3-го разбиения взята строка Z13 Результаты третьего разбиения: Результаты четвертого разбиения: По результатам разбиений получаем номера ФБ для контроля: результат третьего разбиения: 3«0»2→13; 3«1»4→11 и 12; 3«0»4→10; 3 «1»5→6 и 7; 3«0»6→5; 3 «1»7→4. Результат четвертого разбиения: 4«0»2 → 9. Результат пятого разбиения: 5«1»1 → 8; 5«0» →14; 5«1»15 → 2 и 3; 5«0»16 →1. По полученным в результате анализа матрицы состояний номерам контролируемых ФБ для определения неисправного блока строим алгоритм контроля. Алгоритм контроля Рисунок 2. Как видно из алгоритма, максимальное количество элементарных проверок для нахождения неисправного ФБ равно 5 (в данном случае ФБ 8 и 14) Заключение 1.На основе функционально-логической модели и инженерного способа разработан оптимальный алгоритм диагностирования гипотетической систем, которая моделирует систему автоматического контроля и мониторинга. 2. Проведен расчет и в результате получен алгоритм. Для принятой модели максимальное число элементарных испытаний равно 5.
img
Итак, вы хотите стать администратором Windows Desktop? Однако прежде чем вы сможете это сделать, вам необходимо знать несколько ключевых навыков. В этой подробной статье мы расскажем о каждом из этих навыков и о том, как вы можете ими овладеть. 1. Развертывание и обновление Windows Самая фундаментальная задача администратора Windows - это развертывание операционных систем. Это означает установку текущей версии Windows на устройства организации. Традиционно для этого требовалась установка Windows с использованием существующего образа. Поскольку это требует так много времени и усилий со стороны администраторов настольных компьютеров, сегодня большинство организаций используют более автоматизированный подход. Есть несколько способов сделать это, и вы должны понимать их все, потому что не все организации развертывают Windows одинаково. Динамический подход к развертыванию позволяет развертывать Windows быстрее, чем традиционный подход, с помощью различных методов, в то время как современный подход к развертыванию продвигает эту концепцию еще на один шаг - позволяя пользователям самостоятельно развертывать ОС с помощью Windows Autopilot и обновления на месте. В организациях, которые решили не внедрять автопилот для своих пользователей, существуют следующие динамические подходы: Активация подписки. Некоторые версии Windows позволяют легко установить обновленную версию Windows с помощью простого процесса активации без необходимости вводить ключи или выполнять перезагрузку. Но у этого метода есть ограниченные варианты использования. Присоединиться к Azure Active Directory (AAD). В организациях, которые внедрили AAD, пользователь может настроить свое новое устройство Windows с помощью AAD, просто введя свой идентификатор и пароль. Пакеты подготовки. Вы можете развернуть Windows с помощью автономного пакета, созданного конструктором образов и конфигураций Windows (ICD - Windows Imaging and Configuration Designer). Этот процесс занимает меньше времени, чем традиционный подход к развертыванию, но занимает больше времени, чем другие методы. Администратор Windows должен не только понимать, как реализовать эти подходы, но и как настраивать, развертывать и управлять обновлениями ОС, а также как управлять аутентификацией устройств. 2. Управление и защита устройств Сегодня безопасность является насущной проблемой для каждой организации, поскольку одно-единственное нарушение данных может серьезно повредить даже крупнейшую из компаний. По этой причине одной из самых важных задач администратора рабочего стола Windows является безопасное управление устройствами организации и их защита. Администраторы настольных компьютеров должны научиться использовать два основных инструмента Windows для управления устройствами и их защиты: InTune и Defender. Microsoft Intune Этот облачный инструмент позволяет вам управлять настройками, функциями и безопасностью всех устройств, которые используются в организации, включая собственные устройства (BYOD) и те, которые используют ОС, отличные от Windows. Вы должны не только знать, как регистрировать устройства в Intune, но и как настраивать параметры приложения и создавать отчеты инвентаризации. Windows Defender Как пользователь Windows, вы можете думать об этой программе как о еще одном антивирусном приложении. Но в нем есть много функций безопасности корпоративного уровня, которые вам также необходимо освоить. Это включает в себя: Application Guard: Помогает организациям изолировать сайты, которые они сочли ненадежными. Credential Guard: Предотвращает кражу злоумышленниками учетных данных, которые могут быть использованы для атак. Exploit Guard: Добавляет Defender возможность защиты от вторжений. Advanced Threat Protection: Помогает организациям предотвращать, обнаруживать, исследовать сложные угрозы и реагировать на них. Application Control: Позволяет организациям контролировать, какие драйверы и приложения могут запускать устройства Windows. Наконец, как администратор рабочего стола вы должны знать, как эффективно контролировать безопасность и состояние устройства с помощью различных распространенных аналитических инструментов. 3. Управление приложениями и данными Подобно тому, как администратор Windows должен развертывать Windows и управлять этими развертываниями, администратор также должен развертывать приложения - и управлять ими и их данными. Пользователи зависят от своих приложений при выполнении своей работы, и вы должны убедиться, что они могут получить к ним надлежащий доступ. Как администратор, вы должны знать различные средства развертывания, обновления и управления приложениями в современной организации. В зависимости от политик и требований вашей организации вы сможете сделать это через Intune, Microsoft Store для бизнеса или Office 365 ProPlus. Вы также должны знать, как назначать приложения в группу и как подготовить приложение с помощью сайдлодинга, который представляет собой передачу мультимедиа с использованием таких методов, как USB, Bluetooth, Wi-Fi или карты памяти. Поскольку мобильные устройства становятся все более важным компонентом ИТ-инфраструктуры предприятия, вы также должны управлять приложениями, которые работают на этих устройствах, и их данными. Это делается с помощью так называемого управления мобильными приложениями (MAM - mobile application management). Это влечет за собой планирование, реализацию и управление политиками MAM, а также реализацию и настройку различных схем защиты информации. 4. Настройка сетевого подключения. Это очень важная область. Без подключения пользователи просто не могут выполнять свою работу. Таким образом, ничто не расстраивает их больше, чем отсутствие связи. Когда вы станете администратором, вы должны обладать значительным опытом настройки всех аспектов сетевого подключения. Это может повлечь за собой настройку IP-настроек устройств и настроек мобильной сети (включая профили Wi-Fi), а также настройку любого клиента виртуальной частной сети (VPN), поддерживаемого организацией. Что еще более важно, вы должны обладать навыками как для устранения распространенных проблем с подключением, с которыми сталкиваются пользователи, так и для способности их своевременно решать. Кроме того, поскольку так много сотрудников работают удаленно, дома или вне офиса, также важно иметь навыки настройки удаленного подключения. Это может включать настройку доступа к удаленному рабочему столу и инструментов удаленного управления, таких как: Remote Desktop: Удаленный рабочий стол - это программное обеспечение, которое позволяет пользователю на одном компьютере получать доступ к другому компьютеру, как если бы он находился перед ним. Remote Management: Это инструмент Windows, который удаленно управляет оборудованием устройства, позволяя диагностировать и устранять проблемы. PowerShell Remoting: PowerShell - это инструмент для создания сценариев администратора Windows, а удаленное взаимодействие PowerShell - это запуск сценария на удаленном компьютере. 5. Управление политиками и профилями Чтобы организация и ее устройства работали бесперебойно и последовательно, администратор рабочего стола Windows должен иметь возможность управлять широким спектром политик и профилей пользователей и устройств. В сегодняшнем мире, который все больше ориентируется на облачные технологии, для этого необходимо использовать комбинацию локальных инструментов, таких как Configuration Manager и Group Policy, и облачных инструментов, таких как AAD и Intune, и вы должны освоить эти инструменты: Configuration Manager: Инструмент Configuration Manager позволяет, среди прочего, настраивать политики и профили устройств Windows. Group Policy: Инструмент групповой политики обеспечивает централизованную настройку политик и профилей в среде Active Directory. Azure Active Directory (AAD): Администраторы десктопов должны иметь возможность рекомендовать, планировать и внедрять политики совместного управления, которые объединяют эти инструменты. Кроме того, у вас должна быть возможность переносить политики в политики управления мобильными устройствами (MDM). Также важны навыки планирования, внедрения и управления политиками условного доступа и соответствия устройств. Как администратор вы можете дополнительно нести ответственность за планирование, внедрение и управление профилями устройств, и вам, возможно, придется настроить профили пользователей, параметры синхронизации и перенаправление папок. Заключение Потребуется время, чтобы накопить знания, необходимые для успешного администратора Windows. Однако при правильном обучении, ресурсах и подходе к обучению вы можете развить необходимый набор навыков. Как только вы это сделаете, у вас будет возможность расширить не только свою карьеру, но и свой опыт в сфере ИТ.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59