По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Механизм передачи данных или информации между двумя связанными устройствами, соединенными по сети, называется режимом передачи. Режим передачи также называется режимом связи. Он указывает направление потока сигнала между двумя связанными устройствами. Шины и сети предназначены для обеспечения связи между отдельными устройствами, связанными по сети. Категории режимов транзакций Существует три категории режимов передачи: симплексный режим полудуплексный режим полнодуплексный режим Симплексный режим В этом типе режима передачи связь является однонаправленной, то есть данные могут передаваться только в одном направлении. Это означает, что вы не можете отправить сообщение обратно отправителю, как на улице с односторонним движением. Из этих двух устройств только одно может отправлять или передавать по каналу связи, а другое-только принимать данные. Пример: Симплексную дуплексную передачу можно увидеть между компьютером и клавиатурой. Телевизионное вещание, телевидение и пульт дистанционного управления также являются примерами симплексной дуплексной передачи. Другой пример симплексной передачи включает в себя акустическую систему. Диктор говорит в микрофон, и голос передается через усилитель, а затем на динамики. Преимущество Симплексного режима В этом режиме станция может использовать всю пропускную способность канала связи, поэтому одновременно может передаваться больше данных. Недостаток Симплексного режима В основном коммуникации требуют двустороннего обмена данными, но это однонаправленный обмен, поэтому здесь нет связи между устройствами. Полудуплексный Режим В полудуплексном режиме каждая станция может также передавать и принимать данные. Поток сообщений может идти в обоих направлениях, но не одновременно. Вся пропускная способность канала связи используется в одном направлении за один раз. В полудуплексном режиме отправитель отправляет данные и ожидает их подтверждения, а если есть какая-либо ошибка, то получатель может потребовать от него повторной передачи этих данных. Благодаря этому возможно обнаружение ошибок. Примером полудуплексного режима является рация. В рации с одной стороны говорят в микрофон устройства, а с другой-кто-то слушает. После паузы другой говорит, и первое лицо слушает. Пример: Это как однополосная дорога с двунаправленным движением. Пока машины едут в одном направлении, машины, идущие в другую сторону, должны ждать. Преимущество Полудуплексного режима В полудуплексном режиме вся пропускная способность канала берется на себя любым из двух устройств, передающих одновременно. Недостаток Полудуплексного режима Это вызывает задержку в отправке данных в нужное время, так как когда одно устройство отправляет данные, то другое должно ждать отправки данных. Полный Дуплексный Режим В полнодуплексном режиме связь является двунаправленной, то есть поток данных идет в обоих направлениях одновременно. С обоих концов прием и передача данных возможны одновременно. Полнодуплексный режим имеет два физически отдельных пути передачи, один из которых предназначен для движения трафика в одном направлении, а другой-для движения трафика в противоположном направлении. Это один из самых быстрых способов связи между устройствами. Пример: По телефонной линии два человека общаются друг с другом, оба могут говорить и слушать друг друга одновременно, это полнодуплексная передача. Другой пример - улица с двусторонним движением, движение по которой осуществляется одновременно в обоих направлениях. Преимущество Полнодуплексного режима Обе станции могут отправлять и получать данные одновременно, поэтому емкость канала может быть разделена. Недостаток Полнодуплексного режима Полоса пропускания канала связи делится на две части, если между устройствами нет выделенного пути.
img
Мы категорически против нарушения закона и поиска пользовательских данных в противоправных целях. Статья направлена только на обзор подобных способов и создана для предупреждения пользователей сети, а не освещение способа доступа к пользовательским данным. Рекомендуем использовать данные методы только для решения задач в рамках действующего законодательства. Google может найти практически любую интересующую Вас информацию в интернете. Каждый день, пользователи интернета ищут что-либо через поисковые системы. А также, пользуются техникой, системами видеонаблюдения, радионянями и видеорегистраторами в своих автомобилях. На сегодняшний день, практически вся эта техника имеет возможность подключения к интернету. Даже чайник можно подключить к всемирной паутине, что уж говорить про остальные устройства. После прочтения этой статьи, Вы скорее всего начнете по-другому смотреть на «умную» технику, которая заполонила наши квартиры и дома. При чем же тут поисковик под названием Shodan, возможно спросите Вы? А при том, что с помощью этого поисковика можно находить и подключаться к технологичным устройствам. Например, можно удаленно подключиться к веб-камере, установленной в Вашем дворе и следить за жильцами дома. Можно даже управлять подключенным устройством. Поисковик Shodan может помочь заглянуть в скрытый от посторонних глаз мир. Мир интернета вещей. Поисковик Shodan Создателем поисковика Shodan является швейцарский программист Джон Мэтэрли. Поисковик получил свое название в честь одного из персонажей игры System Shock. Этот поисковик имеет возможность оценивать уровень распространения по миру тех или иных устройств и операционных систем. Функционал поисковика постоянно обновляется и расширяется, становясь сюрпризом даже для своего создателя. Поисковый робот Shodan получает и хранит в своей памяти данные обо всех устройствах, которые подключены к интернету и ответили хотя бы на один запрос. ПК и смартфоны обычно уязвимы менее всего, за счет установленных на них антивирусов и фаерволов. А вот остальные сетевые гаджеты неминуемо попадают в поле зрения поисковика, формируя таким образом «интернет вещей». Если еще совсем недавно в зоне риска были лишь wi-fi роутеры, IP-видеокамеры и сетевые принтеры, то теперь к сети подключаются различные системы управления, бытовую технику, веб-камеры, а также радионяни и умные игрушки для детей. В 2016 году, в США был зафиксирован случай, когда к радионяне подключался злоумышленник и пугал по ночам ребенка. Как можно удаленно управлять сетевыми устройствами с помощью Shodan? В большинстве случаев, многими гаджетами, которые подключаются к интернету можно управлять удаленно. Как правило, они не предусматривают ограничения на права доступа, поэтому подключиться к ним может практически любой человек. Это можно осуществить с помощью протоколов SSH, SNMP и даже HTTP. В случае использования стандартных логинов и паролей, подключиться к таким устройствам не составляет никакого труда. Продвинутый хакер подберет пароль за считанные минуты, к тому же, стандартные пароли от производителей техники легко можно найти в сети. Довольно часто, пользователи думают, что установив у себя дома веб-камеру, только у них будет доступ к просмотру ее содержимого. По этой причине они не меняют пароль, установленный производителем по умолчанию. Давайте рассмотрим пример, как можно запросто подключиться к веб-камере Hikvision: Вводим в поисковике Shodan запрос «webcamxp» и ищем камеры Hikvision. Ищем в Google пароль по умолчанию для данной камеры. Как правило, по умолчанию установлен логин «admin», а пароль – 12345. Вводим эти данные в окошко авторизации веб-камеры, и получаем примерно такой результат: Страшно? Очень! При помощи поиска Google можно отыскать описание любой из систем управления. А с помощью Shodan, можно управлять практически каждой из этих систем. Сегодня совсем не обязательно быть хакером, чтобы совершать подобные действия. Ведь зарегистрироваться в Shodan сможет даже школьник. Возможности поисковика Shodan могут, пожалуй, повергнуть в шок любого человека. Ведь получается так, что мы с Вами совершенно не защищены и в наше личное пространство может с легкостью вторгнуться посторонний человек. И мы, возможно, даже не узнаем об этом.
img
В предыдущей статье мы рассмотрели необходимость перераспределения маршрутов, а также рассмотрели некоторые примеры конфигурации. Эта статья основана на предыдущей конфигурации и рассматривает возможность фильтрации маршрутов с помощью карт маршрутов. В частности, в предыдущем примере показано взаимное перераспределение маршрутов между EIGRP и OSPF, где все маршруты были перераспределены между двумя автономными системами. Однако некоторые сценарии проектирования могут потребовать, чтобы мы предотвратили перераспределение каждого отдельного маршрута. Один из способов сделать эту фильтрацию - использовать карту маршрутов. Для справки, вот топология, с которой мы работаем: Кроме того, с нашей текущей конфигурацией перераспределения маршрутов таблица IP-маршрутизации на роутере OFF1 выглядит следующим образом: Скажем, по какой-то причине мы не хотим, чтобы сеть 192.168.2.0 /24 была перераспределена из EIGRP в OSPF. Один из способов сделать эту фильтрацию - использовать карту маршрутов, которая ссылается на список управления доступом (ACL). Во-первых, давайте перейдем к роутеру CENTR и создадим ACL, который соответствует сети, которую мы хотим отфильтровать. CENTR # conf term Enter configuration commands, one per line. End with CNTL/Z. CENTR (config) access-list 1 permit 192.168.2.0 0.0.0.255 Обратите внимание на использование ключевого слова permit в ACL. В этом контексте слово permit одно из ключевых среди match, notallow. Далее мы будем ссылаться на этот ACL в карте маршрутов, и это карта маршрутов, расскажет, что мы хотим запретить этой сети быть перераспределенной. Вот как мы можем создать эту карту маршрута: CENTR (config)# route-map LAB deny 10 CENTR (config-route-map) # match ip address 1 CENTR (config-route-map) #exit CENTR (config)# route-map LAB permit 20 CENTR (config-route-map) exit CENTR (config)# Обратите внимание, что у нас есть два оператора route-map с порядковыми номерами 10 и 20. Как и в ACL, route-map обрабатываются сверху вниз. В этом примере мы хотим запретить сеть 192.168.2.0 / 24 с порядковым номером 10. Затем, чтобы разрешить перераспределение всего остального трафика, мы создаем инструкцию route-map с порядковым номером 20. Обратите внимание, что в отличие от предыдущего оператора route-map (который содержал ключевое слово deny), этот оператор route-map содержит ключевое слово permit. В результате, без необходимости указывать условие соответствия, мы сопоставляем (и разрешаем) все остальные маршруты. Далее, давайте применим нашу карту маршрута к команде redistribute в нашем процессе маршрутизации OSPF на роутере CENTR. В настоящее время команда redistribute для процесса маршрутизации OSPF выглядит следующим образом: edistribute eigrp 1 metric-type 1 subnets То, что мы хотим сделать - это переписать эту команду, добавив ссылку на нашу недавно созданную карту маршрутов. CENTR (config)# router ospf 1 CENTR (config-router)# redistribute eigrp 1 metric-type 1 subnets route-map LAB CENTR (config-router)#end CENTR# Теперь давайте вернемся к роутеру OFF1 и посмотрим, исчезла ли сеть 192.168.2.0/24 из таблицы IP-маршрутизации. Все отлично! Маршрут 192.168.2.0/24 был успешно отфильтрован. В следующей статье мы рассмотрим, как можно устранить неполадки с перераспределением маршрутов.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59