По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Аннотация. Развитие информационных технологий на сегодняшний день является важной задачей не только нашего государства, но и всего мира. Переход общества в информационную сферу деятельности уже давно стало очевидной ступенью в развитии человечества. Развитие информационных технологий каждой страны зависят от уровня экономики и наличие ресурсов каждой страны, но несмотря на то, что в России хорошо развиты данные направления, страна не является лидером в создании информационно-коммуникационных технологий. Российская федерация активно предпринимает меры по развитию данной сферы. Ключевые слова: информационные технологии, цифровизация экономики РФ, индекс развития стран в сфере информационно-коммуникационных технологий. Общество всегда стремилось к развитию. Развитию промышленности, науки и техники, это всегда было первоочередной задачей всего человечества. Такое развитие позволяло людям проще жить, работать, а главное, массово производить те блага, что требовались для населения. Каждая страна по своему развивалась из-за количества ресурсов, которые имеются на территории, а также уровня национальной экономики, что сильно влияло на развитие основных сфер агитирующих прогресс. В середине 20 века произошла научно-техническая революция, которая, в последствии, привила современное общество к развитию различных технологий, которые используются в повседневной жизни. Современные информационные технологии во многом влияют на повседневную жизнь любого человека. ИТ используют для создания электронных рынков переводя все совершаемые платежи в информационную сферу, где можно отследить и проконтролировать оплаты. Также развитие информационных технологий влияет на создание дополнительных рабочих мест и переквалификацию существующего персонала, что напрямую связанно с сокращением безработицы. Информационные технологии расширили возможности в медицинской, образовательной, правоохранительной сферах, что позволило усовершенствовать деятельность каждого института. В настоящее время каждое государство стремится нарастить темпы развития информационных технологий, инвестируя в различные компании, разрабатывающие различные новые идеи. Сейчас практически каждая государственная организация снабжена новейшими техническими средствами ля исполнения их должностных обязанностей, а государство продолжает создавать различные проекты для цифровизации экономики и других сфер. Российской Федерации очень важна переориентация экономики на ИТ-рынок, так как половина доходов в государственный бюджет составляет сырьевой рынок, что неблагоприятно сказывается на экономике из-за резких скачков и падений нефтяных котировок. Информационные технологии для государственных органов власти были предусмотрены не только для эффективной и быстрой работы должностных лиц, но и для минимизации рисков совершения ошибки из-за человеческого фактора, а также для исключения личного контакта с физическими и юридическими лицами, что является инструментом для профилактики против коррупции. С помощью развития технологий бумажный документооборот стал минимальным, а скорость передачи информации увеличилась в разы не только внутри элементов одной структуры, но и между другими большими структурами называя это как межведомственное взаимодействие. Это позволяет синхронизировать работу различных ведомств для более эффективного исполнения своих должностных обязанностей. В Российской Федерации уделяют большое внимание на развитие информационных технологий, понимая, что нельзя уступать европейским и азиатским странам в разработке различных технологий. Для того что бы достичь назначенных целей Правительство РФ в 2019-2024 гг. планирует выделить 1 837 696 млн. руб. (из них 1 099 589 млн. руб. из федерального бюджета) на развитие проекта "Цифровая экономика Российской Федерации". Это важный шаг для создания идеального информационного общества с отлаженной информационной системой. Но не смотря на финансирование государства, Российская Федерация все равно сильно отстает по развитию информационно - коммуникационных технологий в отличии от стран лидеров. Только за один год по индексу развития ИКТ Россия спустилась с 43 места на 45, что не очень положительно сказывается на репутации страны. С другой же стороны можно сказать, что в практических навыках использования ИКТ Российская Федерация входит в двадцатку лучших по сравнению с другими странами мира (табл. 1). Таблица 1. Индекс развития стран в сфере информационно-коммуникационных технологий 2017 (в сравнении с 2016) Индекс развития ИКТ В том числе субиндексы Доступ к ИКТ Использование ИКТ Практические навыки использования ИКТ Место в рейтинге Значение Место в рейтинге Значение Место в рейтинге Значение Место в рейтинге Значение Исландия 1(+1) 8,98 2(0) 9,38 5(0) 8,7 9(+11) 8,75 Республика Крорея 2(-1) 8,85 7(0) 8,85 4(0) 8,71 2(+1) 9,15 Швейцария 3(+1) 8,74 8(0) 8,85 2(+1) 8,88 31(0) 8,21 Дания 4(-1) 8,71 14(0) 8,39 1(0) 8,94 6(0) 8,87 Великобритания 5(0) 8,65 4(0) 9,15 7(+1) 8,38 33 (-4) 8,17 Россия 45 (-2) 7,07 50 (+4) 7,23 51 (-4) 6,13 13 (+1) 8,62 Словакия 46(1) 7,06 51(-1) 7,22 36(+4) 6,67 50(-5) 7,54 Италия 47(-1) 7,04 47(+1) 7,33 42(+1) 6,35 43(-2) 7,86 Поскольку сейчас приоритетной задачей стоит развитие цифровой экономики и различных программ по улучшению цифровой инфраструктуры и созданию информационного общества, у нашей страны есть все шансы выбиться в лидеры. Сегодня перспективы развития информационных технологий в России определяются "Стратегией развития отрасли информационных технологий в Российской Федерации на 2014 - 2020 годы и на перспективу до 2025", "Стратегией развития информационного общества в Российской Федерации на 2017 - 2030 годы", государственной программой Российской Федерации "Информационное общество (2011 - 2020 годы)" Россия, в перспективе, может стать мировым лидером в области программирования, поскольку уже сейчас наши специалисты имеют определенную практику по работе с информационными технологиями, что также доказывают показатели из таблицы 1. Такой путь развития является достаточно перспективным для России, потому что способен стать основным ресурсом для поднятия национальной экономики вместо природных богатств страны. Стоит отметить следующие направления развития информационных технологий: беспроводной, широкополосный Интернет; мультимедиа; ликвидация компьютерной безграмотности; мобильность; робототехника. Исходя из вышеперечисленных стратегий развития, предполагается, что к 2025 году 97% российских домохозяйств будут иметь широкополосный доступ в интернет (100 Мбит/с), а в больших городах созданы мобильные сети 5G. Развитие и снабжения современными информационными технологиями недостаточно для развития цифровой экономики в России, необходимо создать собственные центры по разработки и исследований различных информационных технологий для того, чтобы повысить свою конкурентоспособность на мировом рынке в данной сфере. Для такой цели необходимо создать не только специализированные центры, но и также высококвалифицированных специалистов. Из этого выходит, что большинство высших учебных заведений будут расширять и создавать специализированные учебные программы и специальности в этом направлении или же создание отдельных институтов для обучения будущих ИТ-специалистов. Также основное направление в развитии информационных технологий в России является развитие системы безопасности для защиты конфиденциальной и стратегически важной информации от разливных угроз извне. Приоритетные задачи государства являются обеспечение национальной и экономической безопасности, что в переходе на цифровую платформу стало причиной развития системы защиты от внешних угроз и утечки информации. Кроме этого, в утвержденной программе "Цифровая экономика РФ" следует отметить, что еще одной важной задачей для России является укрепление своих позиций на мировом рынок по оказанию услуг по обработке и хранению данных. Согласно данному направлению в перспективе у Российской Федерации занять 10% долю рынка к 2025 году. В дальнейшем программу планируется дополнить отраслевыми проектами, прежде всего в сфере здравоохранения, государственного управления, создания "умных городов". Исходя из всего вышесказанного, можно сказать, в современном мире развитие информационных технологий очень важно не только для развития и поддержание мировой экономики, но и также для развития общества в целом. Важно понимать, что современные информационные технологии позволяют человечеству совершать и творить то, на что не были способны веками. Благодаря развитию новейших технических средств люди способны практически мгновенно обмениваться информацией, улучшая эффективность работы различных государственных служб. При этом минимизировать риски совершения ошибки, случаев коррупции или иных видов преступления. Позволяет отследить работу каждого сотрудника. В настоящее время Российская Федерация активно предпринимает различные действия по развитию информационных технологий, наличие различных национальных программ подтверждают это. Смотря на 2017 год, можно сказать, что индекс по развитию информационно-коммуникационных технологий не так хорош, как ожидалось, но все же российские специалисты по использованию IT-технологий входят в двадцатку лучших, что дает шансы на дальнейшее развитие. Хотя России стоит решить еще много проблемных вопросов такие как: привлечение средств российских инвесторов для вложения средств в разработку отечественных информационных технологий, открытое конкурсное размещение госзаказов на новые информационные технологии при гарантиях государственных закупок и открытый конкурсный отбор при реализации государственных проектов информатизации.
img
Эта статья подробно объясняет функции и терминологию протокола RIP (административное расстояние, метрики маршрутизации, обновления, пассивный интерфейс и т.д.) с примерами. RIP - это протокол маршрутизации вектора расстояния. Он делится информацией о маршруте через локальную трансляцию каждые 30 секунд. Маршрутизаторы хранят в таблице маршрутизации только одну информацию о маршруте для одного пункта назначения. Маршрутизаторы используют значение AD и метрику для выбора маршрута. Первая часть статьи про базовые принципы работы протокола RIP доступна по ссылке. Административная дистанция В сложной сети может быть одновременно запущено несколько протоколов маршрутизации. Различные протоколы маршрутизации используют различные метрики для расчета наилучшего пути для назначения. В этом случае маршрутизатор может получать различную информацию о маршрутах для одной целевой сети. Маршрутизаторы используют значение AD для выбора наилучшего пути среди этих маршрутов. Более низкое значение объявления имеет большую надежность. Административная дистанция Протокол/Источник 0 Непосредственно подключенный интерфейс 0 или 1 Статическая маршрутизация 90 EIGRP 110 OSPF 120 RIP 255 Неизвестный источник Давайте разберемся в этом на простом примере: А маршрутизатор изучает два разных пути для сети 20.0.0.0/8 из RIP и OSPF. Какой из них он должен выбрать? Ответ на этот вопрос скрыт в приведенной выше таблице. Проверьте объявленную ценность обоих протоколов. Административное расстояние - это правдоподобие протоколов маршрутизации. Маршрутизаторы измеряют каждый источник маршрута в масштабе от 0 до 255. 0 - это лучший маршрут, а 255-худший маршрут. Маршрутизатор никогда не будет использовать маршрут, изученный этим (255) источником. В нашем вопросе у нас есть два протокола RIP и OSPF, и OSPF имеет меньшее значение AD, чем RIP. Таким образом, его маршрут будет выбран для таблицы маршрутизации. Метрики маршрутизации У нас может быть несколько линий связи до целевой сети. В этой ситуации маршрутизатор может изучить несколько маршрутов, формирующих один и тот же протокол маршрутизации. Например, в следующей сети у нас есть два маршрута между ПК-1 и ПК-2. Маршрут 1: ПК-1 [10.0.0.0/8] == Маршрутизатор OFF1 [S0/1 - 192.168.1.254] = = Маршрутизатор OFF3 [S0/1-192.168.1.253] = = ПК-2 [20.0.0.0/8] Маршрут 2: ПК-1 [10.0.0.0/8] == Маршрутизатор OFF1 [S0/0 - 192.168.1.249] == Маршрутизатор OFF2 [S0/0 - 192.168.1.250] == Маршрутизатор OFF2 [S0/1 - 192.168.1.246] == Маршрутизатор OFF3 [S0/0 - 192.168.1.245] == ПК-2 [20.0.0.0/8] В этой ситуации маршрутизатор использует метрику для выбора наилучшего пути. Метрика - это измерение, которое используется для выбора наилучшего пути из нескольких путей, изученных протоколом маршрутизации. RIP использует счетчик прыжков в качестве метрики для определения наилучшего пути. Прыжки - это количество устройств уровня 3, которые пакет пересек до достижения пункта назначения. RIP (Routing Information Protocol) - это протокол маршрутизации вектора расстояния. Он использует расстояние [накопленное значение метрики] и направление [вектор], чтобы найти и выбрать лучший путь для целевой сети. Мы объяснили этот процесс с помощью примера в нашей первой части этой статьи. Хорошо, теперь поймите концепцию метрики; скажите мне, какой маршрут будет использовать OFF1, чтобы достичь сети 20.0.0.0/8? Если он выбирает маршрут S0/1 [192.168.1.245/30], он должен пересечь устройство 3 уровня. Если он выбирает маршрут S0/0 [19.168.1.254/30], то ему придется пересечь два устройства уровня 3 [маршрутизатор OFF! и последний маршрутизатор OFF3], чтобы достичь целевой сети. Таким образом, он будет использовать первый маршрут, чтобы достигнуть сети 20.0.0.0/8. Маршрутизация по слухам Иногда RIP также известен как маршрутизация по протоколу слухов. Потому что он изучает информацию о маршрутизации от непосредственно подключенных соседей и предполагает, что эти соседи могли изучить информацию у своих соседей. Обновления объявлений RIP периодически транслирует информацию о маршрутизации со всех своих портов. Он использует локальную трансляцию с IP-адресом назначения 255.255.255.255. Во время вещания ему все равно, кто слушает эти передачи или нет. Он не использует никакого механизма для проверки слушателя. RIP предполагает, что, если какой-либо сосед пропустил какое-либо обновление, он узнает об этом из следующего обновления или от любого другого соседа. Пассивный интерфейс По умолчанию RIP транслирует со всех интерфейсов. RIP позволяет нам контролировать это поведение. Мы можем настроить, какой интерфейс должен отправлять широковещательную передачу RIP, а какой нет. Как только мы пометим любой интерфейс как пассивный, RIP перестанет отправлять обновления из этого интерфейса. Расщепление горизонта Split horizon-это механизм, который утверждает, что, если маршрутизатор получает обновление для маршрута на любом интерфейсе, он не будет передавать ту же информацию о маршруте обратно маршрутизатору-отправителю на том же порту. Разделенный горизонт используется для того, чтобы избежать циклов маршрутизации. Чтобы понять эту функцию более четко, давайте рассмотрим пример. Следующая сеть использует протокол RIP. OFF1-это объявление сети 10.0.0.0/8. OFF2 получает эту информацию по порту S0/0. Как только OFF2 узнает о сети 10.0.0.0/8, он включит ее в свое следующее обновление маршрутизации. Без разделения горизонта он будет объявлять эту информацию о маршруте обратно в OFF1 на порту S0/0. Ну а OFF1 не будет помещать этот маршрут в таблицу маршрутизации, потому что он имеет более высокое значение расстояния. Но в то же время он не будет игнорировать это обновление. Он будет предполагать, что OFF1 знает отдельный маршрут для достижения сети 10.0.0.0/8, но этот маршрут имеет более высокое значение расстояния, чем маршрут, который я знаю. Поэтому я не буду использовать этот маршрут для достижения 10.0.0.0/8, пока мой маршрут работает. Но я могу воспользоваться этим маршрутом, если мой маршрут будет недоступен. Так что это может сработать как запасной маршрут для меня. Это предположение создает серьезную сетевую проблему. Например, что произойдет, если интерфейс F0/1 OFF1 выйдет из строя? OFF1 имеет прямое соединение с 10.0.0.0/8, поэтому он сразу же узнает об этом изменении. В этой ситуации, если OFF1 получает пакет для 10.0.0.0/8, вместо того чтобы отбросить этот пакет, он переадресует его из S0/0 в OFF2. Потому что OFF1 думает, что у OFF2 есть альтернативный маршрут для достижения 10.0.0.0/8. OFF2 вернет этот пакет обратно в OFF1. Потому что OFF2 думает, что у OFF1 есть маршрут для достижения 10.0.0.0/8. Это создаст сетевой цикл, в котором фактический маршрут будет отключен, но OFF1 думает, что у OFF2 есть маршрут для назначения, в то время как OFF2 думает, что у OFF1 есть способ добраться до места назначения. Таким образом, этот пакет будет бесконечно блуждать между OFF1 и OFF2. Чтобы предотвратить эту проблему, RIP использует механизм подсчета прыжков (маршрутизаторов). Количество прыжков RIP подсчитывает каждый переход (маршрутизатор), который пакет пересек, чтобы добраться до места назначения. Он ограничивает количество прыжков до 15. RIP использует TTL пакета для отслеживания количества переходов. Для каждого прыжка RIP уменьшает значение TTL на 1. Если это значение достигает 0, то пакет будет отброшен. Это решение только предотвращает попадание пакета в петлю. Это не решает проблему цикла маршрутизации. Split horizon решает эту проблему. Если расщепление горизонта включено, маршрутизатор никогда не будет вещать тот же маршрут обратно к отправителю. В нашей сети OFF2 узнал информацию о сети 10.0.0.0/8 от OFF1 на S0/0, поэтому он никогда не будет транслировать информацию о сети 10.0.0.0/8 обратно в OFF1 на S0/0. Это решает нашу проблему. Если интерфейс F0/1 OFF1 не работает, и OFF1, и OFF2 поймут, что нет никакого альтернативного маршрута для достижения в сети 10.0.0.0/8. Маршрут отравления Маршрут отравления работает противоположном режиме расщепления горизонта. Когда маршрутизатор замечает, что какой-либо из его непосредственно подключенных маршрутов вышел из строя, он отравляет этот маршрут. По умолчанию пакет может путешествовать только 15 прыжков RIP. Любой маршрут за пределами 15 прыжков является недопустимым маршрутом для RIP. В маршруте, находящимся в неисправном состоянии, RIP присваивает значение выше 15 к конкретному маршруту. Эта процедура известна как маршрутное отравление. Отравленный маршрут будет транслироваться со всех активных интерфейсов. Принимающий сосед будет игнорировать правило разделения горизонта, передавая тот же отравленный маршрут обратно отправителю. Этот процесс гарантирует, что каждый маршрутизатор обновит информацию об отравленном маршруте. Таймеры RIP Для лучшей оптимизации сети RIP использует четыре типа таймеров. Таймер удержания (Hold down timer) - RIP использует удерживающий таймер, чтобы дать маршрутизаторам достаточно времени для распространения отравленной информации о маршруте в сети. Когда маршрутизатор получает отравленный маршрут, он замораживает этот маршрут в своей таблице маршрутизации на период таймера удержания. В течение этого периода маршрутизатор не будет использовать этот маршрут для маршрутизации. Период удержания будет прерван только в том случае, если маршрутизатор получит обновление с той же или лучшей информацией для маршрута. Значение таймера удержания по умолчанию составляет 180 секунд. Route Invalid Timer - этот таймер используется для отслеживания обнаруженных маршрутов. Если маршрутизатор не получит обновление для маршрута в течение 180 секунд, он отметит этот маршрут как недопустимый маршрут и передаст обновление всем соседям, сообщив им, что маршрут недействителен. Route Flush Timer - этот таймер используется для установки интервала для маршрута, который становится недействительным, и его удаления из таблицы маршрутизации. Перед удалением недопустимого маршрута из таблицы маршрутизации он должен обновить соседние маршрутизаторы о недопустимом маршруте. Этот таймер дает достаточно времени для обновления соседей, прежде чем недопустимый маршрут будет удален из таблицы маршрутизации. Таймер Route Flush Timer по умолчанию установлен на 240 секунд. Update Timer -В RIP широковещательная маршрутизация обновляется каждые 30 секунд. Он будет делать это постоянно, независимо от того, изменяется ли что-то в маршрутной информации или нет. По истечении 30 секунд маршрутизатор, работающий под управлением RIP, будет транслировать свою информацию о маршрутизации со всех своих интерфейсов. RIP - это самый старый протокол вектора расстояний. Для удовлетворения текущих требований к сети он был обновлен с помощью RIPv2. RIPv2 также является протоколом вектора расстояния с максимальным количеством прыжков 15. Вы все еще можете использовать RIPv1, но это не рекомендуется. В следующей таблице перечислены ключевые различия между RIPv1 и RIPv2. Основные различия между RIPv1 и RIPv2 RIPv1 RIPv2 Он использует широковещательную передачу для обновления маршрутизации. Он использует многоадресную рассылку для обновления маршрутизации. Он посылает широковещательный пакет по адресу назначения 255.255.255.255. Он отправляет многоадресную рассылку по адресу назначения 224.0.0.9. Он не поддерживает VLSM. Он поддерживает VLSM. Он не поддерживает никакой аутентификации. Он поддерживает аутентификацию MD5 Он поддерживает только классовую маршрутизацию. Он поддерживает как классовую, так и бесклассовую маршрутизацию. Он не поддерживает непрерывную сеть. Он поддерживает непрерывную сеть.
img
Есть большое количество крупных компании с сетью, содержащих более 500 маршрутизаторов Cisco (и тысячи коммутаторов Cisco Catalyst). Какой используется протокол маршрутизации, поддерживающий все эти маршрутизаторы в согласии о доступных маршрутах? Это усовершенствованный протокол маршрутизации внутреннего шлюза (EIGRP). Именно этому посвящена данная статья, которая является первой из серии статей, посвященных EIGRP (Enhanced Interior Gateway Routing Protocol). Эта серия статей рассматривает фундаментальные концепции EIGRP. Все статьи из цикла EIGRP: Часть 1. Понимание EIGRP: обзор, базовая конфигурация и проверка Часть 2. Про соседство и метрики EIGRP Часть 2.2. Установка K-значений в EIGRP Часть 3. Конвергенция EIGRP – настройка таймеров Часть 4. Пассивные интерфейсы в EIGRP Часть 5. Настройка статического соседства в EIGRP Часть 6. EIGRP: идентификатор роутера и требования к соседству Полное руководство по EIGRP в PDF PDF - это удобно 👾 Все статьи из цикла про EIGRP (Enhanced Interior Gateway Routing Protocol) мы свели в единый PDF домкумент, который вы можете скачать и читать в дороге. Книга по EIGRP в PDF | 3.27 MB Основы EIGRP Существует давняя дискуссия о фундаментальной природе EIGRP. По своей сути, является ли EIGRP протоколом маршрутизации состояния канала или протоколом маршрутизации вектора расстояния? Или же это гибридный протокол маршрутизации (то есть комбинация того и другого)? Вы найдете много литературы, поддерживающей идею о том, что EIGRP является гибридным протоколом маршрутизации, утверждая, что соседи EIGRP изначально обмениваются своей полной таблицей маршрутизации, во многом похожей на протокол маршрутизации вектора расстояния, и EIGRP отправляет только обновления маршрутизации на основе сетевых изменений, во многом напоминающие протокол маршрутизации состояния канала. Многие сетевые инженеры пришли к убеждению, что EIGRP-это "продвинутый протокол маршрутизации вектора расстояния". Их рассуждения по этому поводу: рассмотрим фундаментальную характеристику протокола маршрутизации состояния канала, которая заключается в том, что маршрутизаторы поддерживают таблицу топологии, указывающую, как маршрутизаторы связаны между собой. Эти маршрутизаторы (говоря о протоколах маршрутизации, таких как OSPF и IS-IS) затем запускают алгоритм Дейкстры на этой топологии, чтобы определить "кратчайший" путь к целевой сети с точки зрения конкретного маршрутизатора. EIGRP не поддерживает представление о топологии сети и не выполняет алгоритм Дейкстры. Скорее всего, таблица топологии EIGRP содержит список доступных сетей, а также информацию о "расстоянии" до этих сетей. Характеристики EIGRP Давайте начнем наш обзор EIGRP, рассмотрением нескольких основных характеристиках EIGRP: Быстрая конвергенция: если пропадает связь в сети, во многих случаях EIGRP может быстро перенаправить поток данных, обойдя место сбоя связи. Обычно это происходит не более чем за 3 секунды. Эта быстрая конвергенция становится возможной благодаря тому, что EIGRP имеет резервный маршрут к сети, и этот резервный маршрут готов взять на себя управление в случае сбоя основного маршрута. Высокая масштабируемость: в то время как протокол маршрутизации, такой как RIP, имеет ограничение в пятнадцать переходов маршрутизатора, EIGRP может масштабироваться для поддержки очень крупных корпоративных сетей. Балансировка нагрузки с использованием каналов с разной метрикой: по умолчанию и EIGRP, и OSPF балансируют трафик нагрузки по нескольким каналам, ведущим к определенной целевой сети, если стоимость (то есть значение метрики протокола маршрутизации) одинакова. Однако EIGRP может быть настроен для балансировки нагрузки между каналами с неравными стоимостями. Это стало возможным благодаря функции дисперсии. Поддержка маски подсети переменной длины (VLSM): в отличие от RIP версии 1, EIGRP отправляет информацию о маске подсети как часть объявления маршрута. Коммуникации через мультикаст: в EIGRP спикер маршрутизатор взаимодействует с другими EIGRP-спикер маршрутизаторами через мультикаст. В частности, EIGRP для IPv4 использует адрес многоадресной рассылки 224.0.0.10, в то время как EIGRP для IPv6 использует адрес многоадресной рассылки ff02::a. Больше не проприетарный протокол: в то время как Cisco первоначально представила EIGRP как Cisco-proprietary протокол маршрутизации, в последние годы EIGRP был открыт для других поставщиков. В частности, EIGRP стал открытым стандартом в 2013 году, а информационный RFC EIGRP (RFC 7868) был опубликован в 2016 году. Поддержка нескольких протоколов: EIGRP изначально был разработан для поддержки маршрутизации нескольких протоколов, включая IPv4, IPX и AppleTalk. Хотя современные сети редко используют IPX или AppleTalk, EIGRP теперь может поддерживать IPv6, который набирает популярность. Данная поддержка нескольких протоколов становится возможной благодаря Protocol-Dependent Modules (PDM), где существует отдельный PDM, обрабатывающий решения о маршрутизации для каждого маршрутизируемого протокола (например, IPv4 и IPv6). Алгоритм диффузионного обновления (DUAL): алгоритм EIGRP, используемый для отслеживания маршрутов, известных соседним маршрутизаторам. DUAL также используется для определения наилучшего пути к целевой сети (то есть к маршруту-преемнику) и любых приемлемых резервных путей к этой целевой сети (то есть к возможным маршрутам-преемникам). Суммирование: чтобы уменьшить количество записей в таблице топологии EIGRP (или таблице IP-маршрутизации маршрутизатора), EIGRP имеет возможность суммировать несколько сетевых объявлений в одно сетевое объявление. Это обобщение можно настроить вручную. Однако EIGRP имеет функцию автоматического суммирования маршрутов, которая суммирует сети на классовых границах сети. Обновления: полные обновления таблицы топологии EIGRP отправляются при обнаружении новых соседей. В противном случае будут отправлены частичные обновления. Обзор настройки Базовая конфигурация EIGRP очень проста в настройке. На самом деле, для этого требуется только две команды: router eigrp asn network net-id wildcard-mask Команда router eigrp asn запускает процесс маршрутизации EIGRP на маршрутизаторе для автономной системы (AS), заданной переменной asn. Эта команда также переводит вас в режим настройки маршрутизатора. Оттуда вы можете выполнить вторую команду, network net-id wildcard-mask. Эта вторая команда использует комбинацию сетевого адреса и маски подсети для указания диапазона одного или нескольких IP-адресов, и любой интерфейс маршрутизатора, чей IP-адрес принадлежит этому диапазону IP-адресов, затем участвует в процессе маршрутизации EIGRP. Тем не менее, существуют некоторые правила и модели поведения, которые следует учитывать при выполнении этих команд: EIGRP-спикер маршрутизаторы должны быть такими же, как и для формирования соседства. После того как маршрутизатор включает EIGRP на интерфейсах, соответствующих команде network EIGRP, он пытается обнаружить соседей с помощью многоадресной рассылки приветственных сообщений EIGRP. Если в команде network не указана маска подсети, то указанный сетевой адрес должен быть классовым сетевым адресом. Если в команде network не указана маска подсети, а указан классовый сетевой адрес, то все интерфейсы, IP-адреса которых подпадают под классовую сеть (например, 172.16.1.1 /24 подпадает под 172.16.0.0 /16), будут участвовать в процессе маршрутизации EIGRP. Чтобы проиллюстрировать эти понятия, рассмотрим следующий пример: Конфигурация EIGRP на маршрутизаторах OFF1, OFF2 и OFF3 ! Router OFF1 router eigrp 1 network 10.1.1.0 0.0.0.З network 10.1.1.5 0.0.0.0 network 192.0.2.0 ! Router OFF2 router eigrp 1 network 10.0.0.0 network 198.51.100.0 ! Router OFFЗ router eigrp 1 network 0.0.0.0 Конфигурация EIGRP на маршрутизаторах OFF1, OFF2 и OFF3 начинается с команды router eigrp 1. Эта команда говорит каждому маршрутизатору начать процесс маршрутизации EIGRP в автономной системе 1. Поскольку номера автономной системы должны совпадать между EIGRP-спикер-соседями, все три маршрутизатора используют один и тот же номер автономной системы 1. Кроме того, обратите внимание, как меняется конфигурация при использовании команды network: Команда network 10.1.1.0 0.0.0.3 на роутере OFF1 На маршрутизаторе OFF1 команда network 10.1.1.0 0.0.0.3 задает сетевой адрес 10.1.1.0 с обратной маской 0.0.0.3, которая соответствует 30-битной маске подсети (то есть маске подсети 255.255.255.252). Поскольку IP-адрес интерфейса Gig 0/1 маршрутизатора OFF1 10.1.1.1 / 30 попадает в эту подсеть, этот интерфейс проинструктирован участвовать в процессе EIGRP. Команда network 10.1.1.5 0.0.0.0 на роутере OFF1 Команда network 10.1.1.5 0.0.0.0 указывает конкретный IP-адрес, а не всю подсеть (или можно утверждать, что это подсеть, содержащая один IP-адрес). Мы знаем, что он указывает только один IP-адрес из-за маски подсети 0.0.0.0. Напомним, что в маске подсети мы имеем ряд непрерывных нулей, за которыми следует ряд непрерывных единиц (в двоичном коде). Двоичные нули соответствуют позиции битов в IP-адресе, определяющие адрес сети, а бинарные единицы соответствуют позиции битов в IP-адресе, который указывает адрес узла. Однако в том случае, когда у нас все нули, как в нашем случае, у нас есть сеть с одним и только одним IP-адресом (то есть маска подсети равна /32). Поскольку IP-адрес совпадает с IP-адресом интерфейса Gig 0/2 маршрутизатора OFF1, этот интерфейс также участвует в процессе маршрутизации EIGRP. Команда network 192.0.2.0 на роутере OFF1 Последняя команда network на маршрутизаторе OFF1 - это network 192.0.2.0. Интересно, что эта команда фактически была введена как сеть 192.0.2.0 0.0.0.255, но поскольку 0.0.0.255 является обратной маской, соответствующей маске подсети по умолчанию сети класса C (в данном случае 192.0.2.0 /24), она подразумевается, но не показывается. IP-адрес интерфейса Gig 0/3 маршрутизатора OFF1 192.0.2.1 / 24 действительно попадает в подсеть класса C, заданную командой network. Таким образом, Gig 0/3 также начинает участвовать в процессе маршрутизации EIGRP маршрутизатора OFF1. Команда network 10.0.0.0 на роутере OFF2 Команда network 10.0.0.0 на маршрутизаторе OFF2, не имеет обратной маски. Однако помните, что из ранее обсуждавшейся команды network (на маршрутизаторе OFF1) обратная маска подсети не отображается, если она отражает естественную маску заданной подсети. Основываясь на этой логике, мы можем заключить, что если мы намеренно опустим аргумент обратной маски из команды network, то предполагаемая обратная маска будет маской подсети, соответствующей классовой маске подсети сети, указанной в команде network. В этом случае первый октет сети, указанный в команде network address, равен 10. 10 в первом октете адреса указывает, что мы имеем дело с адресом класса А, который имеет маску подсети по умолчанию 255.0.0.0 и, следовательно, обратную маску по умолчанию 0.0.0.255. Поскольку интерфейсы Gig 0/1 и Gig 0/2 маршрутизатора OFF2 подпадают под этот классовый сетевой оператор, оба интерфейса участвуют в процессе маршрутизации EIGRP маршрутизатора OFF2. Команда network 198.51.100.0 на роутере OFF2 Как и предыдущая команда network, команда маршрутизатора OFF2 network 198.51.100.0 была введена без указания обратной маски. Поскольку первый октет адреса равен 198, мы можем заключить, что у нас есть сеть класса C, чья маска подсети по умолчанию равна 255.255.255.0, а обратная маска по умолчанию равна 0.0.0.255. IP-адрес (198.51.100.1 /24) интерфейсного Gig 0/3 на маршрутизаторе OFF2 живет в пределах указанной подсети 198.51.100.0 /24. Таким образом, интерфейс участвует в процессе маршрутизации EIGRP. Команда network 0.0.0.0 на роутере OFF3 Напомним, что оператор network EIGRP, вопреки распространенному мнению, не указывает сеть для объявления. Скорее, он определяет диапазон одного или нескольких IP-адресов, и любой интерфейс с IP-адресом в этом диапазоне проинструктирован участвовать в процессе маршрутизации EIGRP. Это означает, что, если мы хотим, чтобы все интерфейсы на маршрутизаторе участвовали в одном и том же процессе маршрутизации EIGRP, мы могли бы дать команду network 0.0.0.0, чтобы указать все возможные IP-адреса. Поскольку IP-адрес каждого отдельного интерфейса подпадает под категорию "все возможные IP-адреса", все интерфейсы на маршрутизаторе OFF3 проинструктированы участвовать в процессе маршрутизации EIGRP. Кроме того, сетевые адреса этих участвующих интерфейсов (вместе с информацией о подсети для этих сетевых адресов) затем объявляются через EIGRP. Проверка Процесс проверки EIGRP - это нечто большее, чем просто проверка того, что между всеми маршрутизаторами сформировались соседские отношения и что все маршрутизаторы изучили все маршруты в сети. Процесс верификации должен помочь нам убедиться в том, что наши изначальные требования были выполнены. Например, нам нужно найти соответствующие маршруты, определенные интерфейсы и конкретных соседей, которые будут отображаться в таблицах EIGRP. Как только определимся с нашими изначальными целями проектирования и ожидаемыми результатами, мы можем применить команды проверки EIGRP, показанные в таблице ниже: Ключевые команды проверки EIGRP В следующих примерах показаны результаты выполнения каждой из этих команд после их выполнения на маршрутизаторе OFF1, показанном в предыдущей топологии. Вывод результатов команды show ip route на маршрутизаторе OFF1: Обратите внимание, как маршруты, изученные с помощью EIGRP, показаны с литерой D в левом столбце. Этот код D указывает на маршрут, изученный через EIGRP. Эти маршруты включают 10.1.1.8/30, 198.51.100.0/24 и 203.0.113.0 /24. Также обратите внимание на выделенные числовые значения 90 в каждом EIGRP-изученном маршруте. 90 - это административное расстояние EIGRP (то есть его правдоподобность по сравнению с другими источниками маршрутизации), где более низкие значения административного расстояния предпочтительны по сравнению с более высокими значениями. Вывод из команды show ip protocols на маршрутизаторе OFF1 Вывод информации команды show ip protocols на EIGRP-спикер маршрутизаторе, как видно выше, предлагает нам несколько точек данных. Например, в разделе Routing for Networks: вы видите список сетей, указанных командой network в режиме конфигурации EIGRP. В разделе Routing Information Sources: вы можете видеть IP-адреса соседей EIGRP, которые являются 10.1.1.2 (то есть маршрутизатором OFF2) и 10.1.1.6 (то есть маршрутизатором OFF3) нашей топологии. Также в этом разделе вы можете увидеть административное расстояние (AD) до наших соседей. Поскольку эти соседи являются EIGRP-спикер маршрутизаторами, у них есть EIGRP AD по умолчанию 90. Наконец, обратите внимание на метрический вес K1=1, K2=0, K3=1, K4=0, K5=0 части выходного сигнала. В следующей статье мы узнаем, как EIGRP вычисляет свою метрику и как этот расчет включает в себя K-значения. Вывод из команды show ip eigrp interfaces на маршрутизаторе OFF1 Выходные данные show ip eigrp interfaces, рассмотренные выше, указывают на то, что Gig 0/1, Gig 0/2 и Gig 0/3 маршрутизатора OFF1 участвуют в процессе маршрутизации EIGRP. В частности, этот процесс предназначен для EIGRP AS 1. Также обратите внимание, что соседство EIGRP было установлено с другим маршрутизатором, подключенным от интерфейса Gig 0/1 маршрутизатора OFF1, и другим от интерфейса Gig 0/2. Доказательством этих соседских отношений является наличие числа, превышающего 0 в колонке Peers. Поскольку интерфейс Gig 0/3 маршрутизатора OFF1 не формировал соседство с любыми другими маршрутизаторами, говорящими на EIGRP, в его столбце Peers стоит 0. Вывод из команды show ip eigrp neighbors на маршрутизаторе OFF1: В то время как выводимые данные из команды show ip eigrp interfaces указывали, что у нас было несколько соседей EIGRP, выходные данные из команды show ip eigrp neighbors, как видно выше, предлагают более подробную информацию об этих соседях. В частности, сосед, связанный с интерфейсом маршрутизатора OFF1 по Gig 0/1, имеет IP-адрес 10.1.1.2, а сосед соединен с интерфейсом маршрутизатора OFF1 по Gig0/2 имеет IP-адрес 10.1.1.6. Вывод из команды show ip eigrp topology [all-links] на маршрутизаторе OFF1: Одной из наиболее распространенных команд, используемых для проверки EIGRP и устранения неполадок, является show ip eigrp topology, как показано в приведенном выше примере. Выходные данные этой команды показывают маршруты-преемники (то есть предпочтительные маршруты) и возможные маршруты-преемники (то есть резервные маршруты), известные процессу маршрутизации EIGRP. Пожалуйста, имейте в виду, что появление маршрута в таблице топологии EIGRP не гарантирует его присутствия в таблице IP-маршрутизации маршрутизатора. В частности, маршруты-преемники, присутствующие в таблице топологии EIGRP, являются только кандидатами для попадания в таблицу IP-маршрутизации маршрутизатора. Например, маршрутизатор может обладать более достоверной информацией о маршрутизации для сети, такой как статически настроенный маршрут с административным расстоянием 1. Если EIGRP действительно является наиболее правдоподобным источником маршрутизации для конкретной сети, то эта сеть будет введена в таблицу IP-маршрутизации маршрутизатора. Кроме того, обратите внимание, как добавление аргумента all-links в приведенном выше примере показывает еще больше маршрутов (они выделены). Разница заключается в том, что аргумент all-links предписывает команде show ip eigrp topology отображать все изученные EIGRP маршруты, даже если некоторые из маршрутов не считаются маршрутами-преемниками или возможными маршрутами-преемниками. Теперь, когда вы знаете базу, почитайте про соседство и метрики EIGRP
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59