По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этой заключительной статье о перераспределении маршрутов мы проверим работу Route redistribution с помощью IPv6 и увидим небольшое отличие в настройке routes redistributed IPv6 от routes redistributed IPv4. Предыдущие статьи из цикла: Часть 1. Перераспределение маршрутов (Route redistribution) Часть 2. Фильтрация маршрутов с помощью карт маршрутов Часть 3. Перераспределение маршрутов между автономными системами (AS) Перераспределение подключенных сетей Во-первых, рассмотрим маршрутизатор, выполняющий маршрутизацию, предположим, что используется протокол OSPF. Кроме того, предположим, что маршрутизатор имеет несколько интерфейсов, которые участвуют в маршрутизации OSPF. Представьте, что на этом же маршрутизаторе мы запускаем другой протокол маршрутизации (скажем, EIGRP), и мы делаем взаимное перераспределение маршрутов. Вот что удивительно. Если мы делаем перераспределение маршрута на этом маршрутизаторе, сети IPv4, связанные с интерфейсами этого маршрутизатора, участвующими в OSPF в нашем примере, будут перераспределены в EIGRP. Однако сети IPv6, будут вести себя по-другому. В частности, в сетях IPv6 мы должны ввести дополнительный параметр в нашу конфигурацию перераспределения маршрутов, явно указывая, что мы хотим перераспределить подключенные сети. В противном случае эти маршруты IPv6, связанные с непосредственно с подключенными интерфейсами, не перераспределяются. Логика такого поведения вытекает из понимания того, что для перераспределения маршрута данный маршрут должен появиться в таблице IP-маршрутизации маршрутизатора. Конечно, когда посмотрим таблицу IP-маршрутизации маршрутизатора и увидим непосредственно подключенные сети, эти сети отображаются как подключенные сети, а не сети, которые были изучены с помощью определенного протокола маршрутизации. В то время как route redistribution для IPv4 понимает, что сеть напрямую подключена, но участвует в процессе маршрутизации и поэтому будет перераспределена, route redistribution для IPv6 не делает такого предположения. В частности, если мы перераспределяем сети IPv6 из одного протокола маршрутизации в другой, эти сети должны отображаться в таблице маршрутизации IPv6 маршрутизатора вместе с указанием, что они были изучены с помощью перераспределяемого протокола маршрутизации. Конечно, мы можем добавить дополнительный параметр к нашей команде redistribute, чтобы заставить эти непосредственно подключенные сети IPv6 (участвующие в распространяемом протоколе) также быть перераспределенными. Эта настройка будет продемонстрирована немного позже. Перераспределение в OSPF В прошлой статье мы обсуждали потенциальную проблему, с которой вы можете столкнуться при распространении в OSPF (в зависимости от вашей версии Cisco IOS). Проблема была связана с подсетями. В частности, по умолчанию в более старых версиях Cisco IOS OSPF только перераспределяет классовые сети в OSPF, если мы не добавим параметр subnets к команде redistribute. Добавление этого параметра позволило перераспределить сети в OSPF, даже если у них не было классовой маски. Пожалуйста, имейте в виду, что последние версии Cisco IOS автоматически добавляют параметр подсети, не требуя от вас ручного ввода. Однако параметр подсети в IPv6 route redistribution отсутствует. Причина в том, что IPv6 не имеет понятия о подсетях. Пример route redistribution IPv6 Чтобы продемонстрировать перераспределение маршрутов IPv6, рассмотрим следующую топологию: Протоколы маршрутизации OSPFv3 и EIGRP для IPv6 уже были настроены на всех маршрутизаторах. Теперь давайте перейдем к маршрутизатору CENTR и настроим взаимное route redistribution между этими двумя автономными системами. Убедимся в этом, проверив таблицу маршрутизации IPv6 маршрутизатора CENTR. Приведенные выше выходные данные показывают, что мы изучили две сети IPv6 через OSPF, две сети IPv6 через EIGRP, а CENTR напрямую подключен к двум сетям IPv6. Далее, давайте настроим взаимное перераспределение маршрутов между OSPFv3 и EIGRP для IPv6. CENTR # conf term Enter configuration commands, one per line. End with CNTL/Z. CENTR (config)# ipv6 router eigrp 1 CENTR (config-rtr) # redistribute ospf 1 metric 1000000 2 255 1 1500? include-connected Include connected match Redistribution of OSPF routes route-map Route map reference cr CENTR (config-rtr) #redistribute ospf 1 metric 1000000 2 255 1 1500 include-connected CENTR (config-rtr) #exit CENTR (config) # ipv6 router ospf 1 CENTR (config-rtr) #redistribute eigrp 1? include-connected Include connected metric Metric f or redistributed routes metric-type OSPF/IS-IS exterior metric type for redistributed routes nssa-only Limit redistributed routes to NSSA areas route-map Route map reference tag Set tag for routes redistributed into OSPF cr CENTR (config-rtr) #redistribute eigrp 1 include-connected CENTR (config-rtr) #end CENTR# Обратите внимание, что конфигурация взаимного перераспределения маршрутов, используемая для маршрутов IPv6, почти идентична нашей предыдущей конфигурации для перераспределения маршрутов IPv4. Однако для обеих команд перераспределения был указан параметр include-connected. Это позволило маршрутизатору CENTR перераспределить сеть 2003::/64 (непосредственно подключенную к интерфейсу Gig0/1 маршрутизатора CENTR и участвующую в OSPF) в EIGRP. Это также позволило маршрутизатору CENTR перераспределить сеть 2004::/64 (непосредственно подключенную к интерфейсу Gig0/2 маршрутизатора CENTR и участвующую в EIGRP) в OSPF. Чтобы убедиться, что наша конфигурация рабочая, давайте перейдем на оба маршрутизатора OFF1 и OFF2, убедившись, что каждый из них знает, как достичь всех шести сетей IPv6 в нашей топологии. Вышеприведенные выходные данные подтверждают, что маршрутизаторы OFF1 и OFF2 знают о своих трех непосредственно связанных маршрутах и трех маршрутах, перераспределенных в процессе маршрутизации. Итак, как мы видим, что когда речь заходит о routes redistributed IPv6, то не так уж много нового нужно узнать по сравнению с routes redistributed IPv4.
img
Вторая часть тут Пересечение многочисленных дискуссий в мире сетевого инжиниринга, было одной из проблем, которая затрудняла принятие решения о том, является ли коммутация пакетов или каналов лучшим решением. Как следует вычислять loop-free пути в сети с коммутацией пакетов? Поскольку сети с коммутацией пакетов на протяжении всей истории сетевой инженерии ассоциировались с распределенными плоскостями управления (control plane), а сети с коммутацией каналов -с централизованными плоскостями управления (control plane), проблема эффективного вычисления безцикловых (loop-free) путей оказала значительное влияние на принятие решения о том, являются ли сети с коммутацией пакетов жизнеспособными или нет. На заре сетевой инженерии доступная вычислительная мощность, память и пропускная способность часто были в дефиците. В 1984 году, когда происходили в основном своем эти дискуссии, любая разница в объеме процессора и памяти между двумя способами расчета безцикловых путей через сеть оказала бы существенное влияние на стоимость построения сети. Когда пропускная способность имеет первостепенное значение, уменьшение количества битов, требуемых плоскостью управления (control plane) для передачи информации, необходимой для вычисления набора loop-free путей через сеть, создает реальную разницу в объеме пользовательского трафика, который может обрабатывать сеть. Уменьшение количества битов, необходимых для работы элемента управления, также вносит большую разницу в стабильность сети при более низких полосах пропускания. Например, использование формата Type Length Vector (TLV) для описания информации о плоскости управления (control plane), передаваемой по сети, добавляет несколько октетов информации к общей длине пакета-но в контексте канала 2 Мбит / с, усугубленного chatty control plane, затраты могут значительно перевесить долгосрочное преимущество расширяемости протокола. Протокольные войны в некоторых моментах были довольно жаркими. Были организованы целые исследовательские проекты и написаны статьи о том, почему и как один протокол лучше другого. Было предложено большое разнообразие механизмов для решения задач вычисления loop-free путей через сеть. В конечном счете были широко развернуты и использованы три общих класса решений: Distance Vector protocols (протоколы вектора расстояния), которые вычисляют свободные от петель пути hop by hop на основе стоимости пути. Link State protocols (протоколы состояния связи), которые вычисляют свободные от петель пути через базу данных, синхронизированную между сетевыми устройствами. Path Vector protocols (протоколы вектора пути), которые вычисляют свободные от петель пути hop by hop на основе записи предыдущих прыжков. Дискуссия о том, какой протокол лучше всего подходит для каждой конкретной сети и по каким конкретным причинам, все еще продолжается. И это, возможно, бесконечный спор, поскольку нет окончательного ответа на этот вопрос. Возможно, как и при подгонке сети под бизнес, всегда будет какая-то степень искусства, связанная с тем, чтобы заставить конкретную плоскость управления (control plane) работать в конкретной сети. Однако большая часть актуальности этого вопроса была вызвана ростом скорости сетей-вычислительной мощности, памяти и пропускной способности. Четвертую часть цикла статей про QoS можно почитать по ссылке.
img
Что такое SSO? С помощью системы единого входа (SSO - single sign-on) клиенты могут получать доступ к различным сайтам и приложениям, используя всего один набор входных данных. SSO работает со стратегией подтверждения личности клиента. Это происходит, когда клиент входит в одну программу и сразу же получает доступ в других связанных приложениях. Различные имена пользователей и пароли теперь можно более эффективно отслеживать в различных учетных записях и ресурсах. Удобно ведь, когда человек входит в Google, и его сертификаты за доли секунды подтверждаются в связанных ресурсах, включая Gmail и YouTube, без необходимости регистрации в каждой из них. Токен SSO Токеном системы единого входа (SSO Token) называется сбор информации или данных, которые отправляются с одной платформы на другую в процессе использования SSO. Это основополагающие данные такие, как адрес электронной почты клиента и сведения о системе, которая отправляет токен. Чтобы условный сборщик имел возможность подтвердить, что токен поступает из надежного источника, они должны быть строго промаркированы. В процессе настройки пересылается подтверждение надежности токена, используемого для этой маркировки. Важность системы единого входа SSO имеет важное значение в свете того факта, что постоянно растет количество ресурсов и учетных записей, доступ к которым клиентам необходимо контролировать, и каждый из этих ресурсов требует определенной степени безопасности, которая обычно обеспечивается с помощью комбинации имени пользователя и пароля. Тем не менее, руководителям и клиентам, которые стараются подобрать надежные пароли для нескольких учетных записей, может быть трудно упорядочить и работать с таким количеством учетных записей. Система единого входа поддерживает безопасный доступ к приложениям, унифицируя технику для руководителей и клиентов. Процедура единого входа может выполняться с использованием различных методических инструкций, но все они соответствуют одной и то же базовой структуре. Важным аспектом является то, что они позволяют приложениям отдавать право подтверждения клиента другому приложению или администратору. Этап SSO рассматривается как отдельное пространство, где можно работать лишь с идентификаторами клиентов. Как работает SSO? В основе лежат доверительные отношения между поставщиком услуг (Service Provider) – программой, и поставщиком удостоверений (Identity Provider) – например такой компанией, как OneLogin. Сертификат, которым обмениваются поставщик услуг и поставщик удостоверений, как правило, служит основой для этих самых доверительных отношений. Чтобы поставщик услуг знал, что идентификационная информация поступает из надежного источника, этот сертификат можно использовать для подписи этой идентификационной информации, которая передается от поставщика идентификационной информации поставщику услуг. В SSO эти идентификационные данные представляют собой токены, которые включают в себя идентифицирующие данные о человеке, такие как его адрес электронной почты или имя пользователя. SSO работает на основе доверительных отношений, установленных между приложением, называемым поставщиком услуг, и поставщиком персональных данных, таким как OneLogin. Эти доверительные отношения часто основаны на положительном заключении, одобрении, которым обмениваются поставщик персональных данных и специализированная организация. Это одобрение можно использовать для подписи данных о пользователе, которые отправляются от поставщика персональных данных в специализированную организацию, чтобы поставщик услуг убедился в надежности источника данных. В SSO эта персональная информация отображается в виде токенов, которые содержат различимые фрагменты данных о клиенте, такие как адрес электронной почты клиента или имя пользователя. Далее показано, как обычно происходит взаимодействие при входе в систему: Клиент изучает программу или сайт – «поставщика услуг», к которому он хочет получить доступ. Чтобы запросить проверку личности клиента у SSO, иначе называемой поставщиком удостоверений, поставщик услуг передает токен, который содержит некоторую информацию о клиенте, например, его адрес электронной почты. Чтобы разрешить доступ к приложению поставщика услуг и сразу перейти к пункту 5, поставщик удостоверений должен для начала определить, проходил ли недавно клиент аналогичную проверку. Если клиент этого еще не делал, ему будет предложено войти в систему, предоставив требуемые условия допуска поставщика удостоверений. Это может быть просто имя пользователя и пароль, или это может быть даже совсем другая стратегия подтверждения, например, одноразовый пароль. Поставщик удостоверений отправляет обратно поставщику услуг символьные данные подтверждения фактической проверки каждый раз, когда он подтверждает отправленные сертификаты. Программа клиента передает этот токен поставщику услуг. Доверительные отношения, который были установлены между поставщиком услуг и поставщиком удостоверений во время основного соглашения, используются для утверждения пути проверки через символьные данные, полученные поставщиком услуг. Специализированная организация (поставщик услуг) разрешает доступ клиента. Новый сайт также должен иметь группу доверия, настроенную с механизмом SSO, и процесс проверки будет аналогичным, когда клиент попытается получить доступ к альтернативному сайту. Типы конфигураций SSO SAML - Открытый стандарт SAML (Security Access Markup Language) рассматривает обмен символьной информацией путем кодирования текста в машинный язык. На сегодняшний день SAML – один из основных принципов SSO, он помогает поставщикам приложений гарантировать правильность выполнения их требований проверки. Данные могут передаваться через интернет-браузер благодаря SAML 2.0, который был создан специально для использования в веб-приложениях. OAuth - Компонент авторизации открытого стандарта, известный под названием oAuth, отправляет идентификационные данные между приложениями, используя шифрование машинного кода. Это особенно удобно для использования в локальных приложениях, поскольку позволяет клиентам разрешать доступ к своей информации, начиная с первого приложения, и далее в следующих приложениях, без необходимости подтверждать свою личность физически. Kerberos - При неопределенной организации защиты клиент и сервер могут проверять личность друг друга, используя соглашение Kerberos. Клиенты и программирующие программы, такие как клиенты электронной почты или вики-серверы, проверяются с помощью пропускающего ресурса, который распространяет токены. OIDC - OIDC расширяет OAuth 2.0 путем расширения возможности SSO и поддерживая явную информацию о клиенте. Это позволяет произвести однократную авторизацию для входа в систему для нескольких уникальных приложений. Например, позволяет клиентам входить в справочную систему, используя свою учетную запись Facebook или Google, а не вносить новую информацию в сертификат клиента. Проверка подлинности смарт-карты - Помимо обычного SSO, существует также средства, поддерживающие подобный механизм. Модели устройств содержат устройства чтения карт, которые клиенты могут подключать к своим компьютерам. Для проверки личности клиента программа использует криптографические ключи, хранящиеся на карте. Карты должны находиться только у клиента во избежание утери. Их использование является дорогостоящим, независимо от того, являются ли они просто сами по себе безопасными или требуют PIN-код для работы. Использование SAML и OAuth в SSO Для проверки своей легитимности токены подтверждения используют рекомендации по обмену данными (переписке). SAML, который является языком для создания токенов подтверждения, является основной рекомендацией. XML используется в стандарте SAML для разрешения проверки личности клиента и передачи ему доступа, чтобы можно было связываться через зоны действия системы безопасности. SAML работает с перепиской между клиентом, SP и IdP при использовании его в SSO. Данные клиентов должны безопасно предоставляться различным ресурсам с единственным входом в систему. Это становится возможным с OAuth, который позволяет различным внешним ресурсам использовать данные записи клиента. SP сообщает IdP о запросе клиента на доступ, который IdP затем проверяет и подтверждает, прежде чем предоставлять доступ клиенту. Решение зарегистрироваться на сайте, используя учебную запись Facebook, а не имя пользователя и пароль, является одним из примеров. SSO может использоваться как для автономных соглашений OAuth, так и для SAML. В то время как SAML проверяет клиентов, OAuth используется для подтверждения доступа клиентов. Преимущества и недостатки SSO Преимущества: Сокращение количества атак: SSO исключает возможность того, что закончатся пароли, а также правила подбора паролей, что делает организацию более защищенной от фишинга. Это исключает сбросы паролей, что является утомительным и дорогостоящим, и позволяет клиентам запоминать лишь один пароль. Простой и безопасный клиентский доступ: SSO предоставляет организациям возможность оперативно получить информацию о том, какие клиенты, когда и откуда получили доступ к тем или иным приложениям, позволяя им тем самым защитить целостность своих инфраструктур. Механизмы SSO также могут справить с такими угрозами безопасности, как сбой рабочего устройства, позволяя IT-службам быстро блокировать доступ к учетным записям и важной информации на устройстве. Улучшена оценка клиентского доступа. В постоянно меняющейся обстановке в организации, как правило, стараются обеспечить доступ законных сотрудников к базовым данным и активам на соответствующем уровне. В зависимости от работы, подразделения и статуса клиента права доступа могут быть реализованы с использованием механизмов SSO. Это обеспечивает различимость входных уровней. Конкурентоспособность: пользователи отмечают более быстрый и удобный доступ к проектам, которые им необходимо завершить. Физическая обработка запросов – это задача, которая в основном раздражает клиентов. Проверка SSO избавляет от этой необходимости, предоставляя мгновенный доступ к огромному количеству приложений всего за одну галочку. SSO – это наиболее важный этап защиты вашего бизнеса и его клиентов. Вы можете использовать SSO в качестве основы для других средств защиты, включая многофакторную проверку подлинности и сочетание проверки личности, оценки рисков и согласования советов директоров для выполнения предварительных требований и сокращения предоставления неверных данных. SSO делает вашу организацию легитимной и обеспечивает ее безопасность. Недостатки: SSO проста и практична в использовании, но если она не контролируется должным образом, то это может быть проблемой для безопасности. К проблемам SSO относятся: Если злоумышленник получает права доступа SSO клиента, он также получает и доступ ко всем его приложениям. Соответственно, использование стратегий проверки, отличных от паролей, является основополагающим принципом. Возможные недостатки: недавно злоумышленники получили несанкционированный доступ к веб-сайтам и различным записям из-за недостатков, обнаруженных к SAML и OAuth. Работа с поставщиком, который объединяет SSO с другими этапами проверки и управление личностями в своем продукте, является крайне необходимой в этом отношении. Сходство приложений: иногда приложение может быть спроектировано так, что оно не очень подходит для работы с SSO. Будь то через SAML, Kerberos или OAuth, поставщики приложений должны обеспечить полноценную функциональность SSO. В любом другом случае, ваша система SSO не будет полностью вовлечена, а просто добавит еще один пароль, чтобы клиенты могли его восстановить. Безопасна ли система SSO? Однако неверно было бы утверждать, что SSO – это волшебное решение проблемы. Стоимость, контроль, нормализация (SAML против OAuth) и безопасность, безусловно, являются трудными задачами для организации системы единого входа. Сайт или ресурс могут быть подвержены атаке злоумышленника из-за проблем с проверкой, таких как уязвимость функции «Войти через Apple» или дефект Microsoft OAuth. Кроме того, стоит понимать, что SSO-этап должен быть включен в более крупную корпоративную IT-структуру, поэтому следует тщательно продумать, как это сделать, сохраняя при этом общую безопасность. SSO, например, может помешать устройствам безопасности распознать начальный IP-адрес клиента при попытке пойти в вашу систему. Несмотря на все это, использование SSO в большинстве случаев обеспечивает более высокий уровень безопасности, чем ожидание того, что клиенты будут контролировать все входы в систему для крупных бизнес-приложений. SSO явно сокращает количество моментов для атак, поскольку клиентам нужно реже регистрироваться и вспоминать меньше паролей. Директора могут более эффективно поддерживать меры предосторожности, такие как 2FA и надежные пароли, когда организация представляет собой единую структуру. Самое главное, что использование SSO, как правило, в любом случае безопаснее, чем его неиспользование.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59