По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Подключив SIP – транк к нашему Asterisk, следующим шагом необходимо настроить маршрутизацию вызова. Как это сделать исходящие и входящие маршруты во FreePBX 13 расскажем в сегодняшней статье: Маршрутизация вызова является важнейшей задачей в настройке офисной АТС. В настройках входящей маршрутизации, как правило, компании реализуют свои бизнес процессы – направляют вызовы с определенных номеров на IVR, c других номеров на Ring Group (группы вызова), а третьи напрямую на ответственного менеджера. При исходящей маршрутизации, можно учитывать направление вызова, например, если у вас 2 провайдера IP – телефонии, и один из них дает наилучшую цену для звонков в Сибирь, а другой для звонков на Урал. Пошаговое видео Исходящие маршруты Начнем с настройки исходящей маршрутизации во FreePBX 13. Для этого перейдем во вкладку Connectivity → Outbound Routes Открываем интерфейс настройки на первичной вкладке Route Settings. Давайте разберемся, что можно здесь настроить: Route Name - Имя маршрута. Рекомендуем записывать названия по номеру телефона – это позволяет быстрее ориентироваться в настроенных маршрутах. Route CID - В данном поле можно ввести CallerID для этого маршрута, т.е номер звонящего, который мы будем отправлять в сторону провайдера. Важно отметить, что данный CID является менее приоритетным, чем CID настроенный на SIP – транке и правилах Ring Group, Follow Me. Override Extension - Yes/No: Если выбрано значение Yes, то настроенный в параметрах экстеншена Outbound CID будет игнорироваться Route Password - Данная настройка позволяет запрашивать у пользователя пароль, чтобы позвонить через данный маршрут. Это достаточно полезная опция, при звонках зарубеж. Route Type - Выбрать тип маршрута: Аварийный (Emergency) или Корпоративный (Intra-Company) Аварийный (Emergency): Набор экстренных служб и прочих Корпоративный (Intra-Company): В данном случае будет сохранена информация Caller ID в настройках Extension Music On Hold - Музыка ожидания на маршруте. Для различных направлений звонка, например, можно делать какое-либо звуковое сообщение на нативном для направления языке. Time Group - Временная группа. Если отмечено, то этот маршрут будет использоваться только в указанное в настройках Time Group времени. Route Position - Во FreePBX 13, как и в других версиях используется приоритетность маршрутов в зависимости от его позиции. В данном пункте можно выбрать позицию маршрута относительно других. Trunk Sequence for Matched Routes - Последовательность SIP – транков для отправления вызова в сторону провайдера. Если первый транк не работает, вызов будет отправлен во второй и так далее. Optional Destination on Congestion - Если вызов не может состоять по причине неработоспособности SIP – транков, то можно отправить вызов, например, на звуковое сообщение «В настоящее время все линии недоступны. Обратитесь в техническую поддержку» Отлично, мы разобрались со вкладкой Route Settings, теперь перейдем ко вкладке Dial Patterns, в которой мы будем определять формат набора номера. Вот как выглядит типичная настройка на маршруте: Давайте разбираться более подробно: Шаблон набора номера (Dial Pattern) – это уникальный набор цифр, который позволяет отправить вызов в нужный SIP – транк. Если шаблон совпадает, то вызов отправляется через SIP – транк в сторону провайдера. Шаблон набора номера имеет 4 поля настройки: Prepend, Prefix, Match Pattern и CallerID. Формат такой: (prepend) prefix | [ match pattern / caller ID ] Шаблон Описание X Любое целое число от 0 до 9 Z Любое целое число от 1 до 9 N Любое целое число от 2 до 9 [#####] Любое целое число в скобка. Например, перечисление – [1.2.7], или диапазон чисел –[1.2.6-9], в который попадают числа 1,2,6,7,8,9 .(точка) Любой набор символов Теперь давайте разберемся с полями, которые доступны для заполнения: Prepend - Данная часть будет добавлена к номеру, перед отправкой в SIP – транк в случае совпадения шаблона. Prefix - Префикс – это часть шаблона, которая будет удалена Match Pattern - Набранный номер. ВАЖНО: Asterisk ищет совпадения сопоставляя поле Prefix и Match Pattern. CallerID - Данный звонок будет выполнен только в случае, если звонок инициирован с указанного CallerID. В данном поле можно использовать шаблоны. Полезно, если компания имеет несколько офисов с нумерацией виду 1XXX, 2XXX и так далее. Теперь наш маршрут готов. Мы можем совершать исходящие вызовы. Но как настроить входящую маршрутизацию во FreePBX 13? Перейдем во вкладку Connectivity → Inbound Routes Входящие маршруты Самым главным пунктом в настройке входящего маршрута является DID Number. Данный параметр вы получаете от вашего провайдера, и, как правило, он совпадает с самим подключаемым номером. Даем имя нашему входящему маршруту – чтобы не путаться, мы советуем так же дать имя в соответствие с номером. Далее, самое главное – поле Set Destination. Выбираем назначение для нашего звонка. Это может быть как IVR, проверка времени, Ring Group или что - угодно На этом настройка маршрутизации во FreePBX13 завершена
img
Почитайте предыдущую статью про криптографический обмен ключами. Предположим, вы хотите отправить большой текстовый файл или даже изображение, и позволить получателям подтвердить, что он исходит именно от вас. Что делать, если рассматриваемые данные очень большие? Или что, если данные нужно сжать для эффективной передачи? Существует естественный конфликт между криптографическими алгоритмами и сжатием. Криптографические алгоритмы пытаются произвести максимально случайный вывод, а алгоритмы сжатия пытаются воспользоваться преимуществом неслучайности данных для сжатия данных до меньшего размера. Или, возможно, вы хотите, чтобы информация была прочитана кем-либо, кто хочет ее прочитать, что означает, что не нужно ее шифровать, но вы хотите, чтобы получатели могли проверить, что вы ее передали. Криптографические хэши предназначены для решения этих проблем. Возможно, вы уже заметили по крайней мере одно сходство между идеей хеширования и криптографического алгоритма. В частности, хэш предназначен для получения очень большого фрагмента данных и создания представления фиксированной длины, поэтому на выходе для широкого диапазона входных данных очень мало конфликтов. Это очень похоже на концепцию максимально близкого к случайному выходу для любого ввода, необходимого для криптографического алгоритма. Еще одно сходство, о котором стоит упомянуть, заключается в том, что хэш-алгоритмы и криптографические алгоритмы работают лучше с очень редко заполненным входным пространством. Криптографический хеш просто заменяет обычную хеш-функцию криптографической функцией. В этом случае хэш может быть вычислен и отправлен вместе с данными. Криптографические хэши могут использоваться либо с системами с симметричными ключами, либо с системами с открытым ключом, но обычно они используются с системами с открытым ключом. Сокрытие информации о пользователе Возвращаясь к начальным статьям, еще одна проблема безопасности - это исчерпание данных. В случае отдельных пользователей исчерпание данных можно использовать для отслеживания того, что пользователи делают, пока они находятся в сети (а не только для процессов). Например: Если вы всегда носите с собой сотовый телефон, можно отслеживать перемещение Media Access Control (MAC), когда он перемещается между точками беспроводного подключения, чтобы отслеживать ваши физические перемещения. Поскольку большинство потоков данных не симметричны - данные проходят через большие пакеты, а подтверждения передаются через небольшие пакеты, наблюдатель может обнаружить, когда вы выгружаете и скачиваете данные, и, возможно, даже когда вы выполняете небольшие транзакции. В сочетании с целевым сервером эта информация может дать хорошую информацию о вашем поведении как пользователя в конкретной ситуации или с течением времени. Этот и многие другие виды анализа трафика могут выполняться даже для зашифрованного трафика. Когда вы переходите с веб-сайта на веб-сайт, наблюдатель может отслеживать, сколько времени вы тратите на каждый из них, что вы нажимаете, как вы перешли на следующий сайт, что вы искали, какие сайты вы открываете в любое время и т. д. информация может многое рассказать о вас как о личности, о том, чего вы пытаетесь достичь, и о других личных факторах. Рандомизация MAC-адресов Institute of Electrical and Electronic Engineers (IEEE) первоначально разработал адресное пространство MAC-48 для назначения производителями сетевых интерфейсов. Эти адреса затем будут использоваться "как есть" производителями сетевого оборудования, поэтому каждая часть оборудования будет иметь фиксированный, неизменный аппаратный адрес. Этот процесс был разработан задолго до того, как сотовые телефоны появились на горизонте, и до того, как конфиденциальность стала проблемой. В современном мире это означает, что за одним устройством можно следить независимо от того, где оно подключено к сети. Многие пользователи считают это неприемлемым, особенно потому, что не только провайдер может отслеживать эту информацию, но и любой, кто имеет возможность прослушивать беспроводной сигнал. Один из способов решить эту проблему-позволить устройству регулярно менять свой MAC-адрес, даже, возможно, используя другой MAC-адрес в каждом пакете. Поскольку сторонний пользователь (прослушиватель) вне сети провайдера не может "угадать" следующий MAC-адрес, который будет использоваться любым устройством, он не может отслеживать конкретное устройство. Устройство, использующее рандомизацию MAC-адресов, также будет использовать другой MAC-адрес в каждой сети, к которой оно присоединяется, поэтому оно не будет отслеживаться в нескольких сетях. Существуют атаки на рандомизацию MAC-адресов, в основном сосредоточенные вокруг аутентификации пользователя для использования сети. Большинство систем аутентификации полагаются на MAC-адрес, поскольку он запрограммирован в устройстве, чтобы идентифицировать устройство и, в свою очередь, пользователя. Как только MAC-адрес больше не является неизменным идентификатором, должно быть какое-то другое решение. Места, где рандомизация MAC-адресов может быть атакована, - это Время (timing): если устройство собирается изменить свой MAC-адрес, оно должно каким-то образом сообщить другому абоненту беспроводного соединения об этих изменениях, чтобы канал между подключенным устройством и базовой станцией мог оставаться жизнеспособным. Должна быть какая-то согласованная система синхронизации, чтобы изменяющийся MAC-адрес мог продолжать обмен данными при изменении. Если злоумышленник может определить, когда произойдет это изменение, он сможет посмотреть в нужное время и обнаружить новый MAC-адрес, который принимает устройство. Порядковые номера (Sequence numbers): как и во всех транспортных системах, должен быть какой-то способ определить, все ли пакеты были получены или отброшены. Злоумышленник может отслеживать порядковые номера, используемые для отслеживания доставки и подтверждения пакетов. В сочетании с только что отмеченной атакой по времени это может обеспечить довольно точную идентификацию конкретного устройства при изменении MAC-адреса. Отпечатки информационных элементов (Information element fingerprints): каждое мобильное устройство имеет набор поддерживаемых функций, таких как установленные браузеры, расширения, приложения и дополнительное оборудование. Поскольку каждый пользователь уникален, набор приложений, которые он использует, также, вероятно, будет довольно уникальным, создавая "отпечаток" возможностей, которые будут сообщаться через информационный элемент в ответ на зонды от базовой станции. Отпечатки идентификатора набора услуг (SSID): каждое устройство хранит список сетей, к которым оно может подключиться в настоящее время, и (потенциально) сетей, которые оно могло достичь в какой-то момент в прошлом. Этот список, вероятно, будет довольно уникальным и, следовательно, может выступать в качестве идентификатора устройства. Хотя каждый из этих элементов может обеспечить определенный уровень уникальности на уровне устройства, комбинация этих элементов может быть очень близка к идентификации конкретного устройства достаточно часто, чтобы быть практически полезной при отслеживании любого конкретного пользователя, подключающегося к беспроводной сети. Это не означает, что рандомизация MAC-адресов бесполезна, это скорее один шаг в сохранении конфиденциальности пользователя при подключении к беспроводной сети. Луковая маршрутизация Луковая маршрутизация - это механизм, используемый для маскировки пути, а также шифрования пользовательского трафика, проходящего через сеть. Рисунок 1 используется для демонстрации. На рисунке 1 хост А хочет безопасно отправить некоторый трафик на K, чтобы ни один другой узел в сети не мог видеть соединение между хостом и сервером, и чтобы ни один злоумышленник не мог видеть открытый текст. Чтобы выполнить это с помощью луковой маршрутизации, A выполняет следующие действия: Он использует службу для поиска набора узлов, которые могут соединяться между собой, и предоставления пути к серверу K. Предположим, что этот набор узлов включает [B, D, G], хотя на рисунке они показаны как маршрутизаторы, скорее всего, это программные маршрутизаторы, работающие на хостах, а не выделенные сетевые устройства. Хост A сначала найдет открытый ключ B и использует эту информацию для создания сеанса с шифрованием с симметричным ключом B. Как только этот сеанс установлен, A затем найдет открытый ключ D и использует эту информацию для обмена набором симметричных ключей с D, наконец, построит сеанс с D, используя этот симметричный секретный ключ для шифрования защищенного канала. Важно отметить, что с точки зрения D, это сеанс с B, а не с A. Хост A просто инструктирует B выполнить эти действия от его имени, а не выполнять их напрямую. Это означает, что D не знает, что A является отправителем трафика, он знает только, что трафик исходит от B и передается оттуда по зашифрованному каналу. Как только этот сеанс будет установлен, A затем проинструктирует D настроить сеанс с G таким же образом, как он проинструктировал B настроить сеанс с D. D теперь знает, что пункт назначения-G, но не знает, куда будет направлен трафик G. У хоста A теперь есть безопасный путь к K со следующими свойствами: Трафик между каждой парой узлов на пути шифруется с помощью другого симметричного закрытого ключа. Злоумышленник, который разрывает соединение между одной парой узлов на пути, по-прежнему не может наблюдать трафик, передаваемый между узлами в другом месте на пути. Выходной узел, которым является G, знает пункт назначения, но не знает источник трафика. Входной узел, которым является B, знает источник трафика, но не пункт назначения. В такой сети только А знает полный путь между собой и местом назначения. Промежуточные узлы даже не знают, сколько узлов находится в пути-они знают о предыдущем и следующем узлах. Основная форма атаки на такую систему состоит в том, чтобы захватить как можно больше выходных узлов, чтобы вы могли наблюдать трафик, выходящий из всей сети, и соотносить его обратно в полный поток информации. Атака "Человек посередине" (Man-in-the-Middle) Любой вид безопасности должен не только изучать, как вы можете защитить информацию, но также учитывать различные способы, которыми вы можете вызвать сбой защиты данных. Поскольку ни одна система не является идеальной, всегда найдется способ успешно атаковать систему. Если вам известны виды атак, которые могут быть успешно запущены против системы безопасной передачи данных, вы можете попытаться спроектировать сеть и среду таким образом, чтобы предотвратить использование этих атак. Атаки "человек посередине" (MitM) достаточно распространены, и их стоит рассмотреть более подробно. Рисунок 2 демонстрирует это. Рисунок 2-б аналогичен рисунку 2-а с одним дополнением: между хостом A и сервером C расположен хост B, который хочет начать зашифрованный сеанс. Некоторыми способами, либо подменяя IP-адрес C, либо изменяя записи службы доменных имен (DNS), чтобы имя C преобразовывалось в адрес B, или, возможно, даже изменяя систему маршрутизации, чтобы трафик, который должен быть доставлен в C, вместо этого доставлялся в B, злоумышленник заставил B принять трафик, исходящий из A и предназначенный для C. На рисунке 2-б: Хост A отправляет полуслучайное число, называемое одноразовым номером, в C. Эту информацию получает B. Хост B, который злоумышленник использует в качестве MitM, передает этот одноразовый номер на узел C таким образом, что создается впечатление, что пакет действительно исходит от узла A. В этот момент злоумышленник знает одноразовый идентификатор, зашифрованный A. Злоумышленник не знает закрытый ключ A, но имеет доступ ко всему, что A отправляет зашифрованным с помощью закрытого ключа A. Сервер C также отправляет ответ с зашифрованным одноразовым случайным числом. B получает это и записывает. Хост B передает одноразовое случайное число, полученное от C, на A. Хост A по-прежнему будет считать, что этот пакет пришел непосредственно от C. Хост B вычисляет закрытый ключ с помощью A, как если бы это был C. Хост B вычисляет закрытый ключ с помощью C, как если бы это был A. Любой трафик, который A отправляет в C, будет получен B, что: Расшифруйте данные, которые A передал, используя закрытый ключ, вычисленный на шаге 5 на рисунке 2-б. Зашифруйте данные, которые A передал, используя закрытый ключ, вычисленный на шаге 6 на рисунке 2-б, и передайте их C. Во время этого процесса злоумышленник на B имеет доступ ко всему потоку в виде открытого текста между A и C. Ни A, ни C не осознают, что они оба построили зашифрованный сеанс с B, а не друг с другом. Такого рода атаки MitM очень сложно предотвратить и обнаружить.
img
В данной статье будет произведено краткое описание софтфона Zoiper. Zoiper – это IP-софтфон, который можно скачать и установить на следующие платформы: Windows, Linux, Mac и мобильные IOS и Android. Мы рассмотрим установку на самую распространенную ОС – Windows 7. Ниже приведены ключевые функции и особенности: Опция Zoiper программный телефон SIP + IAX протоколы + IAX2 протоколы + Доступные кодеки GSM, ulaw, alaw, speex, ilbc, Zoiper BIZ (коммерческая версия) поддерживает G.729 STUN сервер для каждого аккаунта + Изменяемое количество линий + Компенсация эхо + Шифрование паролей + Адресная книга + Поддержка DTMF тонов + Специальные кнопки Кнопка удержания вызова, кнопка перевода вызова, кнопка быстрого набора, цифровые клавиши, «ползунки» для управления громкостью микрофона и динамика, кнопка «История» Установка Далее перейдем к установке данного софтфона: для этого кликните на ссылку ниже, она ведёт на официальный сайт вендора, на страницу загрузки https://www.zoiper.com/en/voip-softphone/download/zoiper3 После клика на иконку вашей платформы, появится предложение купить коммерческую версию – можно смело отказываться и выбирать «Free» Скачается установочный файл, и появится всем хорошо знакомое диалоговое окно установки. Для проформы опишу установочные шаги: Нужно кликнуть Next Принять лицензионное соглашение Выбрать опции установки (добавление ярлыка на рабочий стол, в поле быстрого запуска, автозапуск вместе с загрузкой системы) Выбрать директорию установки – можно оставить директорию по умолчанию Нажать Next Выбрать пользователя, для которого устанавливается софтфон (All Users или Current User) Нажать Next Далее начнется процесс установки, после чего нужно нажать Finish и запустить софтфон Ниже указан интерфейс софтфона сразу после установки: Далее необходимо начать настройку софтфона с регистрации аккаунта – нажимаем на вкладку Settings и выбираем Create a new account . В соответствии со скриншотом ниже выбираем тип аккаунта – SIP и нажимаем NEXT. Далее заполняем требуемую информацию – логин, пароль и адрес вашей АТС и снова нажимаем NEXT. Ниже указан пример заполнения Далее Zoiper автоматически укажет имя аккаунта в соответствии с введёнными данными, нажимаем NEXT и пройдет некоторое время, прежде чем аккаунт станет активным (естественно, если все поля были заполнены верно) В конце появится следующее окно: Если всё будет в порядке – в интерфейсе программы будет гореть надпись Online и Registered. Для набора номера необходимо перейти во вкладку Dialpad и набрать требуемый номер.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59