По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сегодня в статье будет описан процесс установки и базовой настройки OpenVPN Access Server – полнофункциональное VPN SSL решение, которое включает в себя непосредственно OpenVPN сервер, веб-интерфейс для управления и клиенты для разных операционных систем – Windows, Mac, Android, IOS, Linux. Во встроенной бесплатной лицензии доступен функционал для одновременного подключения двух пользователей, и, при гибком использовании, этого хватит для реализации множества задач. Пошаговое видео Официальный сайт и процесс установки У OpenVPN Access Server (далее – OVPN AS) есть официальный сайт - https://openvpn.net/ , на котором можно найти множество информации об установке OVPN AS на облачный сервер – вроде платформы Amazon Cloud (Amazon Web Services), на Linux-based операционную систему или на виртуальную машину. : В нашем случае устанавливать будем на CentOS 6 версии, и, для этого необходимо перейти по ссылке Access Server Software Packages, там выбрать CentOS и разрядность ОС, в данном случае – CentOS 6 amd/x86 32-bit. Данная ссылка ведет на RPM-пакет, поэтому проще всего скопировать ссылку и далее скачать пакет с помощью команды wget (но об этом немного ниже). Как альтернативный путь установки – можно скачать на ваш ПК данный пакет и с помощью чего-то вроде WinSCP перенести файл на ваш сервер. Но, как мне кажется, с помощью wget это сделать на порядок быстрее и проще. Далее подключаемся к серверу через терминал, например, Putty, и вводим команду, которая сохранит RPM пакет с OVPN AS в папку tmp в файл под названием ovpn.rpm: wget -O /tmp/ovpn.rpm http://swupdate.openvpn.org/as/openvpn-as-2.1.4-CentOS6.i386.rpm Осталось немного – далее необходимо установить данный пакет. Для начала переходим в нужную директорию с помощью команды cd /tmp и затем выполняем команду rpm -i ovpn.rpm. После чего возможна небольшая пауза, вы увидите, как происходит установка пакета, в конце вы должны увидеть подтверждение, что всё в порядке. Последний шаг, который необходимо сделать перед доступом к веб-интерфейсу – нужно поменять пароль на пользователе openvpn. Делается это следующей командой: passwd openvpn %ваш_пароль%. Если пароль будет простой, то ОС ругнётся – на это можно не обращать внимания. Настройка OpenVPN Access Server с помощью веб-интерфейса Сначала требуется зайти на веб-интерфейс: необходимо ввести адрес https://serveripaddress:943/admin – обратите внимание на обязательность https соединения и 943 порт – это очень важно. Если наберете без /admin попадете в пользовательский интерфейс. Вы, возможно, увидите предупреждение от браузера о небезопасности соединения – можете смело игнорировать. Попав на страницу аутентификации, вводите логин openvpn и пароль, который вы установили в предыдущем шаге. Вам должна открыться следующая картина: Краткое описание каждого из разделов: Status - общее состояние вашего VPN-сервера, пользователи, использующие сервис в данный момент, логи; Configuration - конфигурация сервера – от лицензий до настроек веб-сервера и отказоустойчивости; User Management - создание и управление пользователями и группами пользователей; Authentication - настройка аутентификации и ее различных методов; Tools - различные инструменты для проверки работоспособности, документация, тех. поддержка; Первым делом идем по следующему пути Authentication → General и меняем метод аутентификации на Local: Далее необходимо создать пользователя. Для этого нужно пройти по следующему пути: User Management → User Permissions → Add Extension → Choose IAX Extension и ввести имя нового пользователя(в нашем случае - Fedulya) и немного правее нажать Show . В поле Local Password ввести пароль, остальное все можно оставить по умолчанию. Как заключительный шаг настройки, необходимо ввести ваш внешний IP-адрес во вкладке Server → Network → Settings, остальные настройки уже необходимо гибко выбирать в зависимости от ваших нужд – если у вас появятся вопросы, то оставляйте их в комментариях, с радостью ответим. Важно – по умолчанию вам доступно только две лицензии для одновременного использования, поэтому создание множества юзеров без покупки дополнительных лицензий не имеет большого смысла Заключение Теперь можно зайти в пользовательский интерфейс по адресу https://serveripaddress:943/ ввести логин и пароль свежесозданного на предыдущем шаге пользователя и выбрать опцию «Connect». Далее произойдет установка клиента и автоматически загрузится ваш профиль. Как итог – в трее должно появиться диалоговое сообщение «Connected». Более подробно можете ознакомиться с процессом подключения в нашем видео про настройку OpenVPN Access Server
img
Машинное обучение - это метод анализа данных, который автоматизирует построение аналитической модели. Это отрасль искусственного интеллекта, основанная на идее, что системы могут обучаться на основе данных, выявлять закономерности и принимать решения с минимальным вмешательством человека. Эволюция машинного обучения Из-за новых вычислительных технологий машинное обучение сегодня отличается от машинного обучения в прошлом. Оно основывается на распознавании образов и теории, что компьютеры могут обучаться, не будучи запрограммированы для выполнения конкретных задач; исследователи, интересующиеся искусственным интеллектом, хотели посмотреть, смогут ли компьютеры обучаться, основываясь на базе данных. Итеративный аспект машинного обучения важен, так как модели, подвергающиеся воздействию новых данных, способны самостоятельно адаптироваться. Они учатся от предыдущих вычислений для получения надежных и воспроизводимых решений и результатов. Хотя многие алгоритмы машинного обучения существуют уже давно, способность автоматически применять сложные математические вычисления к объемным данным - снова и снова, все быстрее и быстрее - это новейшая разработка. Вот несколько широко разрекламированных примеров приложений машинного обучения, с которыми вы можете быть знакомы: Сильно раскрученная, самоуправляемая машина Google. Суть машинного обучения. Онлайн рекомендации, такие, как у Amazon и Netflix. Приложения машинного обучения для повседневной жизни. Знание того, что клиенты говорят о вас в соцсетях. Машинное обучение в сочетании с созданием лингвистических правил. Обнаружение мошенничества. Одно из наиболее очевидных, важных применений в современном мире. Почему машинное обучение важно? Возобновление интереса к машинному обучению обусловлено теми же факторами, которые сделали анализ данных и Байесовский анализ более популярными, чем когда-либо. Растущие объемы и разнообразие доступных данных, вычислительная обработка, которая является более дешевой и мощной; доступное хранилище для хранения данных - все эти аспекты означают, что можно быстро и автоматизировано производить модели, которые могут анализировать более объемные и сложные данные и обеспечивать быстрые и более точные результаты - даже на очень больших объемах. А благодаря созданию точных моделей у организации больше шансов определить выгодные возможности или избежать неизвестных рисков. Что необходимо для создания эффективных систем машинного обучения? Возможности подготовки данных. Алгоритмы - базовый и продвинутый. Автоматизация и итерационные процессы. Масштабируемость. Ансамблевое моделирование. Интересные факты В машинном обучении, цель называется - «ярлык». В статистике, цель называется «зависимой переменной». Переменная в статистике называется – «функция в машинном обучении». Преобразование в статистике называется – «создание функции в машинном обучении». Кто использует машинное обучение? Большинство отраслей промышленности, работающих с большими объемами данных признали ценность технологии машинного обучения. Подбирая идеи из этих данных - часто в режиме реального времени - организации способны более эффективно работать или получить преимущество перед конкурентами. Финансовые услуги Банки и другие предприятия финансовой индустрии используют технологию машинного обучения для двух ключевых целей: для выявления важных данных и предотвращения мошенничества. Они могут определить инвестиционные возможности или помочь инвесторам узнать, когда торговать. Интеллектуальный анализ данных может также идентифицировать клиентов с профилями высокого риска или использовать кибер-наблюдение, чтобы точно определить признаки мошенничества. Правительство Правительственные учреждения, такие как общественная безопасность и коммунальные службы, особенно нуждаются в машинном обучении, поскольку у них есть несколько источников данных, из которых можно получить информацию для полного понимания. Например, анализ датчика данных определяет пути повышения эффективности и экономии средств. Машинное обучение также может помочь обнаружить мошенничество и минимизировать кражу личных данных. Здравоохранение Машинное обучение является быстро развивающимся направлением в отрасли здравоохранения, благодаря появлению переносных устройств и датчиков, которые могут использовать данные для оценки состояния здоровья пациента в режиме реального времени. Эта технология также может помочь медицинским экспертам анализировать данные для выявления тенденций или «красных флажков», которые могут привести к улучшению диагностики и лечения. Розничная торговля Веб-сайты, рекомендующие товары, которые могут вам понравиться на основе предыдущих покупок, используют машинное обучение для анализа вашей истории покупок. Ритейлеры полагаются на машинное обучение для сбора данных, их анализа и использования для персонализации процесса совершения покупок, проведения маркетинговой кампании, оптимизации цен, планирования поставок товаров, а также для понимания потребностей клиентов. Нефть и газ Поиск новых источников энергии. Анализ минералов в почве. Прогнозирование неисправности датчика НПЗ. Оптимизация распределения нефти, чтобы сделать ее более эффективной и рентабельной. Количество вариантов использования машинного обучения для этой отрасли огромно - и продолжает расти. Транспорт Анализ данных для определения закономерностей и тенденций является ключевым для транспортной отрасли, которая полагается на повышение эффективности маршрутов и прогнозирование потенциальных проблем для повышения прибыльности. Анализ данных и аспекты моделирования машинного обучения являются важными инструментами для компаний доставки, общественного транспорта и других транспортных организаций. Каковы популярные методы машинного обучения? Двумя наиболее широко распространенными методами машинного обучения являются контролируемое обучение и неконтролируемое обучение, но существуют и другие методы машинного обучения. Вот обзор самых популярных типов. Контролируемое обучение Алгоритмы контролируемого обучения изучаются с использованием маркированных примеров, таких как ввод, в котором известен желаемый результат. Например, единица оборудования может иметь точки данных, помеченные как «F» (ошибка) или «R» (работа). Алгоритм обучения получает набор входных данных вместе с соответствующими правильными выходными данными, а алгоритм обучается путем сравнения своих фактических выходных данных с правильными выходными данными, чтобы найти ошибки. Затем он соответствующим образом модифицирует модель. С помощью таких методов, как классификация, регрессия, прогнозирование и повышение градиента, контролируемое обучение использует шаблоны для прогнозирования значений метки на дополнительных немаркированных данных. Контролируемое обучение обычно используется в приложениях, где исторические данные предсказывают вероятные будущие события. Например, он может предвидеть, когда транзакции по кредитным картам могут быть мошенническими или какой клиент страхования может подать иск. Полуконтролируемое обучение Полуконтролируемое обучение используется для тех же приложений, что и контролируемое обучение. Но для обучения оно использует как помеченные, так и непомеченные данные, как правило, это небольшой объем помеченных данных с большим количеством немеченых данных (поскольку немеченые данные дешевле и требуют меньше усилий для их получения). Этот тип обучения может использоваться с такими методами, как классификация, регрессия и прогнозирование. Полуконтролируемое обучение полезно, когда стоимость, связанная с маркировкой, слишком высока, чтобы учесть полностью помеченный процесс обучения. Ранние примеры этого включают идентификацию лица человека по веб-камере. Неконтролируемое обучение Неконтролируемое обучение используется в отношении данных, которые не имеют исторических меток. Система не сказала «правильный ответ». Алгоритм должен выяснить, что показывается. Цель состоит в том, чтобы исследовать данные и найти некоторую структуру внутри. Неуправляемое обучение хорошо работает на транзакционных данных. Например, он может идентифицировать сегменты клиентов со схожими признаками, которые затем могут обрабатываться аналогично в маркетинговых кампаниях. Или он может найти основные атрибуты, которые отделяют сегменты клиентов друг от друга. Популярные методы включают самоорганизующиеся таблицы, отображение ближайших соседей, кластеризацию k-средств и разложение по сингулярным числам. Эти алгоритмы также используются для сегментирования текстовых тем, рекомендации элементов и резко отличающихся значений данных. Усиленное обучение Усиленное обучение часто используется для робототехники, игр и навигации. Благодаря обучению с подкреплением алгоритм с помощью проб и ошибок обнаруживает, какие действия приносят наибольшее вознаграждение. Этот тип обучения состоит из трех основных компонентов: агент (учащийся или лицо, принимающее решения), среда (все, с чем взаимодействует агент) и действия (что может делать агент). Цель состоит в том, чтобы агент выбирал действия, которые максимизируют ожидаемое вознаграждение в течение заданного периода времени. Агент достигнет цели намного быстрее, следуя хорошей политике. Таким образом, цель усиленного обучения состоит в том, чтобы изучить лучшую политику. Каковы различия между интеллектуальным анализом данных, машинным обучением и глубоким обучением? Хотя все эти методы имеют одну и ту же цель - извлекать идеи, шаблоны и зависимости, которые можно использовать для принятия решений - у них разные подходы и возможности. Сбор данных (Data Mining) Интеллектуальный анализ данных можно рассматривать как набор множества различных методов для извлечения информации из данных. Он может включать традиционные статистические методы и машинное обучение. Интеллектуальный анализ применяет методы из разных областей для выявления ранее неизвестных шаблонов из данных. Он может включать в себя статистические алгоритмы, машинное обучение, анализ текста, анализ временных рядов и другие области аналитики. Интеллектуальный анализ данных также включает изучение, практику хранения и обработки данных. Машинное обучение Основное отличие машинного обучения заключается в том, что, как и в статистических моделях, цель состоит в том, чтобы понять структуру данных - подогнать теоретические распределения к хорошо понятным данным. Таким образом, под статистическими моделями стоит теория, которая математически доказана, но для этого необходимо, чтобы данные также соответствовали определенным строгим гипотезам. Машинное обучение развивалось на основе способности использовать компьютеры для проверки данных на предмет структуры, даже если у нас нет теории о том, как эта структура выглядит. Испытанием модели машинного обучения является ошибка проверки новых данных, а не теоретическое испытание, которое подтверждает нулевую гипотезу. Поскольку машинное обучение часто использует итеративный подход для изучения данных, обучение может быть легко автоматизировано. Передача через данные проходит, пока не будет найден надежный шаблон. Глубокое изучение (Deep learning) Глубокое обучение сочетает в себе достижения в области вычислительной мощности и специальных типов нейронных сетей для изучения сложных моделей больших объемов данных. В настоящее время методы глубокого обучения подходят для идентификации объектов в изображениях и слов в звуках. В настоящее время исследователи стремятся применить эти успехи в распознавании образов для решения более сложных задач, таких как автоматический перевод языка, медицинские диагнозы и множество других важных социальных и деловых проблем. Как это работает? Чтобы получить максимальную отдачу от машинного обучения, вы должны знать, как сочетать лучшие алгоритмы с подходящими инструментами и процессами. Алгоритмы: графические пользовательские интерфейсы помогают создавать модели машинного обучения и реализовывать итеративный процесс машинного обучения. Алгоритмы машинного обучения включают в себя: Нейронные сети Деревья решений Случайные леса Ассоциации и обнаружение последовательности Градиент повышения и расфасовки Опорные векторные машины Отображение ближайшего соседа K-средства кластеризации Самоорганизующиеся карты Методы локальной оптимизации поиска Максимальное ожидание Многомерные адаптивные регрессионные сплайны Байесовские сети Оценка плотности ядра Анализ главных компонентов Сингулярное разложение Смешанные Гауссовские модели Последовательное сопроводительное построение правил Инструменты и процессы: Как мы уже знаем, это не просто алгоритмы. В конечном счете, секрет получения максимальной отдачи от ваших объемных данных заключается в объединении лучших алгоритмов для поставленной задачи с: Комплексным качеством данных и их управлением GUI для построения моделей и процессов Интерактивным исследованием данных и визуализацией результатов модели Сравнением различных моделей машинного обучения для быстрого определения лучшей Автоматизированной оценкой группы для выявления лучших исполнителей Простым развертыванием модели, что позволяет быстро получать воспроизводимые и надежные результаты Интегрированной комплексной платформой для автоматизации процесса принятия решений
img
Введение Wi-Fi 6, также многим известный как 802.11ax, является новым поколением Wi-Fi и очередным шагом на пути непрерывных внедрений различных инноваций. Если опираться на стандарт 802.11ac, то Wi-Fi 6 позволяет увеличить темп передачи информации, пропускную работоспособность как свежих, так и ранее имеющихся сетей при использовании приложений новейшего поколения за счет повышения производительности, масштабируемости и гибкости. Современный Wi-Fi 6 привлекателен со всех точек зрения - здесь и физическое изменение радиоантенн, и поддержка OFDMA - множественный доступ с ортогональным частотным распределением каналов и сжатие данных благодаря модуляции QAM 1024, которая позволяет увеличивать количество информационных битов, представленных частотным спектром 1 Гц, и меток пакетов в каналах, чтобы определить "свой или чужой". Какими преимуществами обладает Wi-Fi 6? За счет Wi-Fi 6 многие компании и поставщики услуг приобретают возможность поддерживать новейшие приложения на существующей инфраструктуре беспроводных локальных сетей и в тоже время управлять старыми приложениями в наиболее значительном уровне. Такого рода сценарий раскрывает способности для осуществления свежих бизнес-моделей и увеличения уровня введения технологии Wi-Fi. Существуют отличия Wi-Fi 6 от стандарта 802.11ax? Отличий никаких нет, это одно и то же. Предприятие Wi-Fi Alliance запустила кампанию согласно применению термина Wi-Fi 6 с целью обозначения эталона IEEE 802.11ax. Он обозначает стандарт Wi-Fi 6-го поколения. Это было выполнено с целью облегчить рекламную информацию и увеличить результативность позиционирования стандарта 802.11ax по аналогии с эталонами сотовой связи, созданными консорциумом 3GPP. Разделение частот По сути OFDMA - применявшийся ранее OFDM, оптимизированный ради значительного числа юзеров в предоставленной сети. OFDMA дает возможность усовершенствовать передачу информации в беспроводной сети с значительной плотностью устройств. Также снижается задержка отправки пакетов для каждого юзера по отдельности. Wi-Fi 6 использует поддержку OFDMA. Чтобы успешнее применять диапазон там, в каком месте на него претендуют большое множество юзеров, радиочастотный канал делится на поднесущие шириной приблизительно 78 кГц. Предоставления данных выполняется на каналах, организованных из определенного числа поднесущих. Характеристики технологии Wi-Fi 6 Опишем некоторые технические параметры: Используется квадратурная амплитудная модуляция 1024, которая позволяет увеличить скорость и плотность модуляции; Используйте технологию многостанционного программирования (OFDMA), чтобы уменьшить нагрузку и время ожидания; Надежная и эффективная передача сигнала обеспечивает более эффективную работу со значительно меньшей индикацией сигнала (RSSI); Увеличенный срок службы батареи благодаря функции TWT (Target Wake Time) ; Wi-Fi 6 на деле Начальные точки доступа, поддерживаемые для Wi-Fi 6, уже появились на рынке. Кроме того, начали появляться первые мобильные устройства, объединяющие интегрированный Wi-Fi 6, и, как можно скорее, их приобретение и внедрение, вероятно, станут превосходной инвестицией для большинства пользователей. Самая высокая скорость передачи данных по Wi-Fi составляет 6 Гбит/с. Протоколы RFID/ZigBee/Bluetooth внедряются для поддержки устройств IoT по всему миру, что, несомненно, будет способствовать высвобождению спектра Wi-Fi в контексте интенсивного создания интернет вещей. В этом случае вы можете игнорировать тот факт, что в настоящее время они поддерживают только проект стандарта, поскольку с вероятностью почти 100% они могут быть достигнуты в окончательном варианте с использованием простой смены программного обеспечения.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59