По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Говоря простым языком, 3CX IP PBX (Phone System) это телефонная станция для корпоративных клиентов, для бизнеса. Многие компании привыкли к традиционным офисным мини – АТС, которые работают на собственной аппаратной платформе и приобретаются как единое устройство. 3CX - это в первую очередь программное обеспечение, которое может быть установлено на компьютер или сервер на базе операционной системы Windows. От слов к делу, перейдем непосредственно к АТС. В данной статье будет описана облачная АТC 3CX Phone System. Главный интерфейс После установки 3CX, первая и самая главная консоль администратора АТС – это интерфейс на скриншоте ниже. Этот интерфейс позволяет производить настройку телефонной станции 3CX Phone System, совершать перезагрузку и прочие административные функции. Навигационная панель Навигационная панель помогает администратору быстро найти необходимый сегмент настройки. Данная панель позволяет быстро перемещаться между объектами навигации и редактировать их в главном поле интерфейса. Разберем основные элементы навигационной панели АТС 3CX Phone System: Статус Портов/Транков: Проверка работы PSTN линий или VoIP транков Статус абонентов: Просмотр статуса каждого из номеров в АТС Статус системных номеров: Состояние системных номеров АТС 3CX Клиенты 3CX Phone: Зарегистрированные в системе клиенты Удаленные подключения: Список удаленных клиентов АТС со статусом регистрации События 3CX: Возможность просмотра журнала IP – АТС 3CX и текущих ошибок в режиме реального времени Событий Windows: Данный пункт отвечает на вопрос «Что происходит с сервером 3CX?» Статус сервисов: Список запущенных сервисов 3CX и их статусы (в рамках Windows) Телефоны: Просмотр и управление аппаратными телефонами Внутренние номера: Просмотр, добавление и редактирование внутренних номеров SIP Trunks: Просмотр, управление и добавление SIP транков от провайдера телефонии PSTN шлюзы: Менеджмент устройств для стыка с телефонной сетью общего пользования (PSTN) Входящие правила: Настройка правил обработки входящего вызова Исходящие правила: Настройка поведения исходящего звонка (куда маршрутизировать, как и так далее) Автосекретарь: «Здравствуйте! Вы позвонили в компанию…» Группы вызова: Настройка нескольких внутренних номеров, которые будут звонить одновременно при определенных обстоятельствах Очереди вызова: Реализация алгоритма очередей вызовов Настройки: В данном меню можно произвести настройки музыки на удержании, глобального расписания работы сервера и прочих «общих» настроек Обновления: Проверка доступных обновлений программного обеспечения Помощь: Ссылка на FAQ, форум, блог и прочие ресурсы компании 3CX, где желающий может найти ответы на свои вопросы по работе с АТС Автосекретарь 3CX PBX 3CX Phone это SIP софтфон, который позволяет использовать компьютер вместе с гарнитурой в роли полноценной замены аппаратному телефону на столе. Перечислим некоторые из ключевых возможностей софтфона: Совершение и прием звонков Обработка нескольких одновременных вызовов Возможность повесить вызов на «холд» Совершать трансфер вызова Просмотр входящих вызовов Поддержка TAPI (Telephony Application Programming Interface) для интеграции с Microsoft Outlook (лицензируется дополнительно) Кнопка записи разговоров сохраняет аудио файл разговора на локальный компьютер
img
Перед тем как начать чтение этой статьи, советуем ознакомиться с материалом про расчет пути по алгоритму Bellman - ford. Алгоритм диффузного обновления (Diffusing Update Algorithm -DUAL) - один из двух обсуждаемых здесь алгоритмов, изначально предназначенных для реализации в распределенной сети. Он уникален тем, что также удаляет информацию о достижимости и топологии, содержащуюся в конечном автомате алгоритма. Другие обсуждаемые здесь алгоритмы оставляют удаление информации на усмотрение реализации протокола, а не рассматривают этот аспект работы алгоритма внутри самого алгоритма. К 1993 году Bellman-Ford и Dijkstra были реализованы как распределенные алгоритмы в нескольких протоколах маршрутизации. Опыт, полученный в результате этих ранних реализаций и развертываний, привел ко "второй волне" исследований и размышлений о проблеме маршрутизации в сетях с коммутацией пакетов, что привело к появлению вектора пути и DUAL. Поскольку DUAL разработан как распределенный алгоритм, лучше всего описать его работу в сети. Для этой цели используются рисунки 8 и 9. Чтобы объяснить DUAL, в этом примере будет прослеживаться поток A, изучающего три пункта назначения, а затем обрабатываются изменения в состоянии доступности для этих же пунктов назначения. В первом примере будет рассмотрен случай, когда есть альтернативный путь, но нет downstream neighbor, второй рассмотрит случай, когда есть альтернативный путь и downstream neighbor. На рисунке 8 изучение D с точки зрения A: A узнает два пути к D: Через H стоимостью 3. Через C стоимостью 4. A не узнает путь через B, потому что B использует A в качестве своего преемника: A - лучший путь B для достижения D. Поскольку B использует путь через A для достижения D (пункта назначения), он не будет анонсировать маршрут, который он знает о D (через C) к A. B выполнит split horizon своего объявления D на A, чтобы предотвратить образование возможных петель пересылки. A сравнивает доступные пути и выбирает кратчайший путь без петель: Путь через H помечен как преемник. Возможное расстояние устанавливается равным стоимости кратчайшего пути, равной 3. A проверяет оставшиеся пути, чтобы определить, являются ли какие-либо из них downstream neighbors: Стоимость C составляет 3. A знает это, потому что C объявляет маршрут к D со своей локальной метрикой, равной 3. A сохраняет локальную метрику C в своей таблице топологии. Следовательно, A знает локальную стоимость в C и локальную стоимость в A. 3 (стоимость в C) = 3 (стоимость в A), поэтому этот маршрут может быть петлей, следовательно, C не удовлетворяет условию выполнимости. C не помечен как downstream neighbors. Downstream neighbors в DUAL называются возможными преемниками. Предположим, что канал [A, H] не работает. DUAL не полагается на периодические обновления, поэтому A не может просто ждать другого обновления с достоверной информацией. Скорее A должен активно следовать альтернативному пути. Таким образом, это диффузный процесс обнаружения альтернативного пути. Если канал [A, H] не работает, учитывая только D: A проверяет свою локальную таблицу на предмет возможных преемников (Downstream neighbors). Возможных преемников нет, поэтому A должен найти альтернативный путь без петель к D (если он существует). A отправляет запрос каждому соседу, чтобы определить, есть ли какой-либо альтернативный путь без петель к D. В C: Преемником C является E (не A, от которого он получил запрос). Стоимость E ниже, чем стоимость A для D. Следовательно, путь C не является петлей. C отвечает со своей текущей метрикой 3 на A. В B: А - нынешний преемник Б. Посредством запроса B теперь обнаруживает, что его лучший путь к D потерпел неудачу, и он также должен найти альтернативный путь. Обработка B здесь не расписывается, а предоставляется выполнить самостоятельно. B отвечает A, что у него нет альтернативного пути (отвечает бесконечной метрикой). A получает эти ответы: Путь через C - единственный доступный, его стоимость 4. A отмечает путь через C как его преемника. Других путей к D нет. Следовательно, нет подходящего преемника (downstream neighbor). На рисунке 9 пункт назначения (D) был перемещен с H на E. Это будет использоваться во втором примере. В этом примере есть возможный преемник (downstream neighbor). Изучение D с точки зрения A: A узнает два пути к D: Через H стоимостью 4. Через C стоимостью 3. A не узнает никакого пути через B: У B есть два пути к D. Через C и A стоимостью 4. В этом случае B использует как A, так и C. B выполнит split horizon свого объявления D на A, потому что A помечен как преемник. A сравнивает доступные пути и выбирает кратчайший путь без петель: Путь через C отмечен как преемник. Возможное расстояние устанавливается равным стоимости кратчайшего пути, равной 3. A проверяет оставшиеся пути, чтобы определить, являются ли какие-либо из них downstream neighbors: Стоимость H составляет 2. 2 (стоимость в H) = 3 (стоимость в A), поэтому этот маршрут не может быть петлей. Следовательно, H удовлетворяет условию выполнимости. H отмечен как возможный преемник (downstream neighbors). Если канал [A, C] не работает, просто рассматривая A: A проверит свою таблицу локальной топологии на предмет возможного преемника. Возможный преемник существует через H. A переключает свою локальную таблицу на H как лучший путь. Распространяющееся обновление не запускалось, поэтому пути не были проверены или пересчитано. Следовательно, допустимое расстояние изменить нельзя. Он остается на 3. A отправляет обновление своим соседям, отмечая, что его стоимость достижения D изменилась с 3 до 4. Как вы можете видеть, обработка, когда существует возможный преемник, намного быстрее и проще, чем без него. В сетях, где был развернут протокол маршрутизации с использованием DUAL (в частности, EIGRP), одной из основных целей проектирования будет ограничение объема любых запросов, генерируемых в случае отсутствия возможного преемника. Область запроса является основным определяющим фактором того, как быстро завершается двойной алгоритм и, следовательно, как быстро сходится сеть. На рисунке 10 показан базовый законченный автомат DUAL. Вещи, входящие в route gets worse (ухудшение маршрута), могут представлять собой: Отказ подключенного канала или соседа Получение обновления для маршрута с более высокой метрикой Получение запроса от текущего преемника Получение нового маршрута от соседа Обнаружен новый сосед, а также маршруты, по которым он может добраться Получение всех запросов, отправленных соседям, когда маршрут ухудшается
img
Что такое логи Linux? Все системы Linux создают и хранят файлы логов информации для процессов загрузки, приложений и других событий. Эти файлы могут быть полезным ресурсом для устранения неполадок системы. Большинство файлов логов Linux хранятся в простом текстовом файле ASCII и находятся в каталоге и подкаталоге /var/log. Логи создаются системным демоном логов Linux, syslogd или rsyslogd. В этом руководстве вы узнаете, как находить и читать файлы логов Linux, а также настраивать демон ведения системных логов. Как просматривать логи Linux 1. Сначала откройте терминал Linux как пользователь root. Это позволит получить root-права. 2. Используйте следующую команду для просмотра папки где находятся файлов логов: cd /var/log 3. Чтобы просмотреть логи, введите следующую команду: ls Команда отображает все файлы логов Linux, такие как kern.log и boot.log. Эти файлы содержат необходимую информацию для правильного функционирования операционной системы. Доступ к файлам логов осуществляется с использованием привилегий root. По определению, root - это учетная запись по умолчанию, которая имеет доступ ко всем файлам Linux. Используйте следующий пример строковой команды для доступа к соответствующему файлу: sudo less [log name here].log Эта команда отображает временную шкалу всей информации, относящейся к этой операции. Обратите внимание, что файлы логов хранятся в виде обычного текста, поэтому их можно просматривать с помощью следующих стандартных команд: zcat - Отображает все содержимое logfile.gz zmore - Просмотр файла по страницам, не распаковывая файлы zgrep - Поиск внутри сжатого файла grep - Найти все вхождения поискового запроса в файле или отфильтровать файл логов tail - Выводит последние несколько строк файлов head - Просмотр самого начала текстовых файлов vim - Просмотр при помощи текстового редактора vim nano - Просмотр при помощи текстового редактора nano Важные системные логи Linux Логи могут многое рассказать о работе системы. Хорошее понимание каждого типа файла поможет различать соответствующие логи. Большинство каталогов можно сгруппировать в одну из четырех категорий: Системные логи (System Logs) Логи событий (Event Logs) Логи приложений (Application Logs) Логи обслуживания (Service Logs) Многие из этих логов могут быть расположены в подкаталоге var/log. Системные логи Файлы логов необходимы для работы Linux. Они содержат значительный объем информации о функциональности системы. Наиболее распространенные файлы логов: /var/log/syslog: глобальный системный журнал (может быть в /var/log/messages) /var/log/boot.log: лог загрузки системы, где хранится вся информация, относящаяся к операциям загрузки /var/log/auth.log: логи аутентификации, который хранит все логи аутентификации, включая успешные и неудачные попытки (может быть в /var/log/secure) /var/log/httpd/: логи доступа и ошибок Apache /var/log/mysqld.log: файл логов сервера базы данных MySQL /var/log/debug: логи отладки, который хранит подробные сообщения, связанные с отладкой, и полезен для устранения неполадок определенных системных операций /var/log/daemon.log: логи демона, который содержит информацию о событиях, связанных с запуском операции Linux /var/log/maillog: логи почтового сервера, где хранится информация, относящаяся к почтовым серверам и архивированию писем /var/log/kern.log: логи ядра, где хранится информация из ядра Linux /var/log/yum.log: логи команд Yum /var/log/dmesg: логи драйверов /var/log/boot.log: логи загрузки /var/log/cron: логи службы crond Демон системных логов Логирование осуществляется при помощи демона syslogd Программы отправляют свои записи журнала в syslogd, который обращается к конфигурационному файлу /etc/syslogd.conf или /etc/syslog и при обнаружении совпадения записывает сообщение журнала в нужный файл журнала. Каждый файл состоит из селектора и поля ввода действия. Демон syslogd также может пересылать сообщения журнала. Это может быть полезно для отладки. Этот файл выглядит приерно так: Dec 19 15:12:42 backup.main.merionet.ru sbatchd[495]: sbatchd/main: ls_info() failed: LIM is down; try later; trying ... Dec 19 15:14:28 system.main.merionet.ru pop-proxy[27283]: Connection from 186.115.198.84 Dec 19 15:14:30 control.main.merionet.ru pingem[271] : office.main.merionet.ru has not answered 42 times Dec 19 15:15:05 service.main.merionet.ru vmunix: Multiple softerrors: Seen 100Corrected Softerrors from SIMM J0201 Dec 19 15:15:16 backup.main.merionet.ru PAM_unix[17405]: (sshd) session closed 'for user trent Логи приложений Логи приложений хранят информацию, относящуюся к любому запускаемому приложению. Это может включать сообщения об ошибках, признаки взлома системы и строку идентификации браузера. Файлы логов, которые попадают в эту категорию, включают логи системы печати CUPS, лог Rootkit Hunter, логи HTTP-сервера Apache, логи SMB-сервера Samba и лог сервера X11. Логи не в удобочитаемом формате Не все логи созданы в удобочитаемом формате. Некоторые предназначены только для чтения системными приложениями. Такие файлы часто связаны с информацией для входа. Они включают логи сбоев входа в систему, логи последних входов в систему и записи входа в систему. Существуют инструменты и программное обеспечение для чтения файлов логов Linux. Они не нужны для чтения файлов, так как большинство из них можно прочитать непосредственно с терминала Linux. Графические интерфейсы для просмотра файлов логов Linux System Log Viewer - это графический интерфейс, который можно использовать для отслеживания системных логов. Интерфейс предоставляет несколько функций для управления логами, включая отображение статистики лога. Это удобный графический интерфейс для мониторинга логов. В качестве альтернативы можно использовать Xlogmaster, который может отслеживать значительное количество файлов логов. Xlogmaster полезен для повышения безопасности. Он переводит все данные для выделения и скрытия строк и отображает эту информацию для выполнения действий, запрошенных пользователем. Как настроить файлы логов в Ubuntu и CentOS Начнем с примера CentOS. Чтобы просмотреть пользователей, которые в настоящее время вошли на сервер Linux, введите команду who от имени пользователя root: Здесь также отображается история входа в систему пользователей. Для просмотра истории входа системного администратора введите следующую команду: last reboot Чтобы просмотреть информацию о последнем входе в систему, введите: lastlog Выполнить ротацию лога Файлы логов, в конце которых добавлены нули, являются повернутыми файлами. Это означает, что имена файлов логов были автоматически изменены в системе. Целью ротации логов является сжатие устаревших логов, занимающих место. Ротацию лога можно выполнить с помощью команды logrotate. Эта команда вращает, сжимает и отправляет системные логи по почте. logrotate обрабатывает системы, которые создают значительные объемы файлов логов. Эта команда используется планировщиком cron и считывает файл конфигурации logrotate /etc/logrotate.conf. Он также используется для чтения файлов в каталоге конфигурации logrotate. Чтобы включить дополнительные функции для logrotate, начните с ввода следующей команды: var/log/log name here].log { Missingok Notifempty Compress Size 20k Daily Create 0600 root root } Он сжимает и изменяет размер желаемого файла логов. Команды выполняют следующие действия: missingok - сообщает logrotate не выводить ошибку, если файл логов отсутствует. notifempty - не выполняет ротацию файла логов, если он пуст. Уменьшает размер файла лога с помощью gzip size - гарантирует, что файл логов не превышает указанный размер, и поворачивает его в противном случае daily - меняет файлы журналов по ежедневному расписанию. Это также можно делать по недельному или ежемесячному расписанию. create - создает файл логов, в котором владелец и группа являются пользователем root Итоги Тщательное понимание того, как просматривать и читать логи Linux, необходимо для устранения неполадок в системе Linux. Использование правильных команд и инструментов может упростить этот процесс.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59