По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Существует новая тенденция для стандартов проектирования топологии сети - создание быстрой, предсказуемой, масштабируемой и эффективной коммуникационной архитектуры в среде центра обработки данных. Речь идет о топологии Leaf-Spine, о которой мы поговорим в этой статье. Почему Leaf-Spine? Учитывая повышенный фокус на массовые передачи данных и мгновенные перемещения данных в сети, стареющие трехуровневые конструкции в центрах обработки данных заменяются так называемым дизайном Leaf-Spine. Архитектура Leaf-Spine адаптируется к постоянно меняющимся потребностям компаний в отраслях big data с развивающимися центрами обработки данных. Другая модель Традиционная трехуровневая модель была разработана для использования в общих сетях. Архитектура состоит из Core маршрутизаторов, Aggregation маршрутизаторов (иногда этот уровень называется Distribution) и Access коммутаторов. Эти устройства взаимосвязаны путями для резервирования, которые могут создавать петли в сети. Частью дизайна является протокол Spanning Tree (STP) , предотвращающий петли, однако в этом случае деактивируется все, кроме основного маршрута и резервный путь используется только тогда, когда основной маршрут испытывает перебои в работе. Введение новой модели С конфигурацией Leaf-Spine все устройства имеют точно такое же количество сегментов и имеют предсказуемую и согласованную задержку информации. Это возможно из-за новой конструкции топологии, которая имеет только два слоя: слой «Leaf» и «Spine». Слой Leaf состоит из access коммутаторов, которые подключаются к таким устройствам как сервера, фаерволы, балансировщики нагрузки и пограничные маршрутизаторы. Уровень Spine, который состоит из коммутаторов, выполняющих маршрутизацию, является основой сети, где каждый коммутатор Leaf взаимосвязан с каждым коммутатором Spine. Чтобы обеспечить предсказуемое расстояние между устройствами в этом двухуровневом дизайне, динамическая маршрутизация уровня 3 используется для соединения уровней. Она позволяет определить наилучший маршрут и настроить его с учетом изменения сети. Этот тип сети предназначен для архитектур центров обработки данных, ориентированных на сетевой трафик типа «Восток-Запад» (East-West). Такой трафик содержит данные, предназначенные для перемещения внутри самого центра обработки данных, а не наружу в другую сеть. Этот новый подход является решением внутренних ограничений Spanning Tree с возможностью использования других сетевых протоколов и методологий для достижения динамической сети. Преимущества Leaf-Spine В Leaf-Spine сеть использует маршрутизацию 3го уровня. Все маршруты сконфигурированы в активном состоянии с использованием протокола равноудаленных маршрутов Equal-Cost Multipathing (ECMP) . Это позволяет использовать все соединения одновременно, сохраняя при этом стабильность и избегая циклов в сети. При использовании традиционных протоколов коммутации уровня 2, таких как Spanning Tree в трехуровневых сетях, он должен быть настроен на всех устройствах правильно, и все допущения, которые использует протокол Spanning Tree Protocol (STP), должны быть приняты во внимание (одна из простых ошибок, когда конфигурация STP связана с неправильным назначением приоритетов устройства, что может привести к неэффективной настройке пути). Удаление STP между уровнями Access и Aggregation приводит к гораздо более стабильной среде. Другим преимуществом является простота добавления дополнительного оборудования и емкости. Когда происходит ситуация перегрузки линков, которая называется oversubscription (что означает, что генерируется больше трафика, чем может быть агрегировано на активный линк за один раз) возможность расширять пропускную способность проста - может быть добавлен дополнительный Spine коммутатор и входящие линии могут быть расширены на каждый Leaf коммутатор, что приведет к добавлению полосы пропускания между уровнями и уменьшению перегрузки. Когда емкость порта устройства становится проблемой, можно добавить новый Leaf коммутатор. Простота расширения оптимизирует процесс ИТ-отдела по масштабированию сети без изменения или прерывания работы протоколов коммутации уровня 2. Недостатки Leaf-Spine Однако этот подход имеет свои недостатки. Самый заметный из них – увеличение количества проводов в этой схеме, из-за соединения каждого Leaf и Spine устройства. А при увеличении новых коммутаторов на обоих уровнях эта проблема будет расти. Из-за этого нужно тщательно планировать физическое расположение устройств. Другим основным недостатком является использование маршрутизации уровня 3.Ее использование не дает возможность развертывать VLAN’ы в сети. В сети Leaf-Spine они локализованы на каждом коммутаторе отдельно – VLAN на Leaf сегменте недоступен другим Leaf устройствам. Это может создать проблемы мобильности гостевой виртуальной машины в центре обработки данных. Применение Leaf-Spine Веб-приложения со статичным расположением сервера получат преимущество от реализации Leaf-Spine. Использование маршрутизации уровня 3 между уровнями архитектуры не препятствует приложениям веб-масштаба, поскольку они не требуют мобильности сервера. Удаление протокола Spanning Tree Protocol приводит к более стабильной и надежной работе сети потоков трафика East-West. Также улучшена масштабируемость архитектуры. Корпоративные приложения, использующие мобильные виртуальные машины (например, vMotion), создают проблему, когда сервер нуждается в обслуживании внутри центра обработки данных, из-за маршрутизации уровня 3 и отсутствие VLAN. Чтобы обойти эту проблему, можно использовать такое решение, как Software Defined Networking (SDN) , которое создает виртуальный уровень 2 поверх сети Leaf-Spine. Это позволяет серверам беспрепятственно перемещаться внутри центра обработки данных. Другие решения В качестве альтернативы маршрутизации уровня 3 топология Leaf-and-Spine может использовать другие протоколы, такие как Transparent Interconnection of Lots of Links (TRILL) или Shortest Path Bridging (SPB) для достижения аналогичной функциональности. Это достигается за счет сокращения использования Spanning Tree и включения ECMP уровня 2, а также поддержки развертывания VLAN между Leaf коммутаторами. Итог Сети Leaf-Spine предлагают множество уникальных преимуществ по сравнению с традиционной трехуровневой моделью. Использование маршрутизации 3-го уровня с использованием ECMP улучшает общую доступную пропускную способность, используя все доступные линии. Благодаря легко адаптируемым конфигурациям и дизайну, Leaf-Spine улучшает управление масштабируемостью и контролем над перегрузкой линий. Устранение протокола Spanning Tree Protocol приводит к значительному повышению стабильности сети. Используя новые инструменты и имея способность преодолевать присущие ограничения другими решениям, такими как SDN, среды Leaf-Spine позволяют ИТ-отделам и центрам обработки данных процветать при удовлетворении всех потребностей и потребностей бизнеса.
img
Привет, коллега. Сегодня хотим сделать небольшой обзор двух продуктов компании Cisco, а именно, сервер обеспечения голосовых сообщений Cisco Unity Connection (CUC) и сервер обмена мгновенным сообщениями и доступностью абонента Cisco Unified Presence (Instant Messaging and Presence, IM&P). Cisco Unity Connection Данное решение компании Cisco Systems предназначено для сервиса голосовых сообщений, голосовой почты и распознавания голоса. Сервер CUC обеспечивает доступ пользователей к голосовой почте в рамках архитектуры Unified Communications. Один высокопроизводительный сервер может обеспечить взаимодействие с 20 000 пользователей. Функционал распознавания речи, который создан как для внутренних так и для внешних пользователей, позволяет управлять системой с помощью голоса. Встроенный почтовый сервер обеспечивает автоматическую отправку голосовых сообщений, а так же, предоставляется возможность прослушивать свою почту через WEB – интерфейс через интернет браузер. Cisco Unity Connection – одно из пяти продуктов компании Cisco базирующихся на операционной системе Linux. Вся информация, такая как медиа данные, а так же статистические данные хранятся локально на сервере в БД IBM Informix. Сервер CUC поддерживает интеграцию с различными телефонными станциями, поддерживая соединение как через IP, так и через TDM. Для удобства одновременной настройки большого числа пользователей, понимает стандартный формат Comma-Separated Values (CSV). Данный файл содержит информацию о множестве пользователей, может быть создан через Microsoft Office и импортирован через консоль Unity Connection. Параллельно, поддерживается ручная настройка пользователей и синхронизация с Active Directory по протоколу Lightweight Directory Access Protocol (LDAP). Сервер Cisco Unity Connection обеспечивает традиционный телефонный интерфейс пользователя Telephone User Interface (TUI) для взаимодействия через Dual-Tone Multi-Frequency (DTMF) протокол. Лицензирование Следующие лицензии на CUC предоставляется производителем: SpeechView - данная технология распознает голосовое сообщение и отправляет его в виде текста на почтовый ящик. Распространяется в расчете 1 лицензия / 1 пользователь. Голосовой ящик - лицензия на 1 пользовательский ящик для голоса. Аппаратная платформа Продукт Cisco Unity Connection может быть установлен на различных аппаратных платформах, например, HP или IBM. Рекомендуется инсталляция на сервера Cisco Convergence Server (MCS). Cisco Unified Presence (Instant Messaging and Presence, IMP) Данное решение компании Cisco Systems предназначено для расширения базовых статусов доступности и состояния абонента, передающихся с Cisco Unified Communications Manager (CUCM), таких как трубку поднята или снята. Продукт IMP предназначен для передачи информации о состоянии коллег и бизнес партнеров (доступен, занят и отошел), которая видна пользователю еще до звонка. Корпоративный обмен мгновенными сообщениями, Instant Messaging (IM), обеспечивает чат –группами или индивидуальными чат – сессиями отдельных пользователей. Основная цель IM&P это сокращение времени дозвона до абонента корпоративной сети, путем обеспечения статуса доступности этого абонента. Пользователи могут самостоятельно менять статус, а так же, сообщать тип устройства через которое они доступны, например, это может быть мобильный или стационарный телефон. Сервер IM&P настраивается в связке с CUCM, который обеспечивает телефонную сигнализацию и базовый статус о доступности, такой как поднятие и снятие телефонной трубки. Основные протоколы, обеспечивающие передачу статусов пользователей, это SIP for Instant Messaging and Presence Protocol (SIMPLE) и Extensible Messaging and Presence Protocol (XMPP). Итак, Instant Messaging and Presence предоставляет следующие конкурентные преимущества: Корпоративный обмен мгновенными сообщениями - коммуникации сотрудников в режиме реального времени путем обмена сообщениями в чате. Решение предоставляет возможность как индивидуального, так и группового обмена мгновенными сообщениями Архивация и хранение данных - решение предоставляет возможность сохранять листинг переписки в PostgreSQL базе данных. Это позволяет всегда вернуться к важной корпоративной переписке. Виртуальное присутствие - удобная визуализация статуса доступности абонента делает решение максимально привлекательным для корпоративного сегмента.
img
Символические ссылки используются в Linux для управления файлами и их сопоставления. В этом руководстве вы узнаете, как использовать команду ln для создания символических ссылок в Linux. Команда Ln для создания символических ссылок Чтобы использовать команду ln, откройте окно терминала и введите команду в следующем формате: ln [-sf] [source] [destination] По умолчанию команда ln создает hard link (жесткая ссылка). Используйте параметр -s, чтобы создать символическую ссылку, она же soft link. Параметр -f заставит команду перезаписать уже существующий файл. Source - это файл или каталог, на который делается ссылка. Destination - это место для сохранения ссылки - если это поле не заполнено, символическая ссылка сохраняется в текущем рабочем каталоге. Например, создайте символическую ссылку с помощью: ln -s test_file.txt link_file.txt Это создает символическую ссылку link file.text, которая указывает на testfile.txt. Чтобы проверить, создана ли символическая ссылка, используйте команду ls: ls -l link_file.txt Создать символическую ссылку на каталог Linux Символическая ссылка может относиться к каталогу. Чтобы создать символическую ссылку на каталог в Linux: ln -s /mnt/external_drive/stock_photos ~/stock_photos В этом примере создается символическая ссылка с именем stock_photos в домашнем каталоге ~ /. Ссылка относится к каталогу stock_photos на внешнем диске external_drive. Примечание. Если система подключена к другому компьютеру, например к корпоративной сети или удаленному серверу, символические ссылки могут быть связаны с ресурсами в этих удаленных системах. Принудительно перезаписать символические ссылки Вы можете получить сообщение об ошибке, как показано на изображении ниже: Сообщение об ошибке означает, что в месте назначения уже есть файл с именем link_file.txt. Используйте параметр -f, чтобы система перезаписывала целевую ссылку: ln -sf test_file.txt link_file.txt Примечание. Использование опции -f навсегда удалит существующий файл. Удаление ссылок Если исходный файл будет перемещен, удален или станет недоступным (например, сервер отключится), ссылку нельзя будет использовать. Чтобы удалить символическую ссылку, используйте команду rm (remove) или unlink: rm link_file.txt unlink link_file.txt Soft Links против Hard Links Команду ln можно использовать для создания двух разных типов ссылок: Hard Links (жесткие ссылки) Soft Links (символические или мягкие ссылки) Символические ссылки (Soft Links) Символическая ссылка, иногда называемая мягкой ссылкой или soft link, указывает на расположение или путь к исходному файлу. Она работает как гиперссылка в Интернете. Вот несколько важных аспектов символической ссылки: Если файл символьной ссылки удаляется, исходные данные остаются. Если исходный файл будет перемещен или удален, символическая ссылка работать не будет. Символическая ссылка может относиться к файлу в другой файловой системе. Символические ссылки часто используются для быстрого доступа к часто используемым файлам без ввода всего местоположения. Жесткие ссылки (Hard Links) Когда файл хранится на жестком диске, происходит несколько вещей: Данные физически записываются на диск. Создается справочный файл, называемый индексом, который указывает на расположение данных. Имя файла создается для ссылки на данные inode. Жесткая ссылка работает путем создания другого имени файла, которое ссылается на данные inode исходного файла. На практике это похоже на создание копии файла. Вот несколько важных аспектов жестких ссылок: Если исходный файл удален, к данным файла все равно можно будет получить доступ через другие жесткие ссылки. Если исходный файл перемещен, жесткие ссылки по-прежнему работают. Жесткая ссылка может относиться только к файлу в той же файловой системе. Если количество жестких ссылок равно нулю, индексный дескриптор и данные файла удаляются безвозвратно.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59