По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Прежде чем перейти к более сложным темам, мы завершим эту серию статей об основах OSPF. Здесь мы рассмотрим типы LSA, типы областей и виртуальные ссылки (LSA types, area types, и virtual links). Протокол маршрутизации OSPF: LSA, области и виртуальные ссылки OSPF LSA ТИПЫ Link State Advertisements (LSA) — Объявления состояния канала — это основа работы сетей на OSPF. Наполнение этих обновлений позволяют сети OSPF создать карту сети. Это происходит с помощью алгоритма кратчайшего пути Дейкстры. Не все LSA OSPF равны. Ниже представлен каждый их них: Router (Type 1) LSA - мы начинаем с того, что многие называют «фундаментальным» или «строительным блоком» Link State Advertisements. Type 1 LSA (также известный как Router LSA) определен в пределах области. Он описывает интерфейсы локального маршрутизатора, которые участвуют в OSPF, и соседей, которых установил локальный спикер OSPF. Network (Type 2) LSA - вспомните, как OSPF функционирует на (широковещательном) Ethernet сегменте. Он выбирает Designated Router (DR) and Backup Designated Router (BDR), чтобы уменьшить количество смежностей, которые должны быть сформированы, и хаос, который будет результатом пересечением этих отношений. Type 2 LSA отправляется назначенным маршрутизатором в локальную область. Этот LSA описывает все маршрутизаторы, которые подключены к этому сегменту. Summary (Type 3) LSA – напоминаем вам, что Type 1 LSA и Type 2 LSA ретранслируются в пределах области. Мы называем их intra-area LSA. Теперь пришло время для первого из наших inter-area LSA. Summary (Type 3) LSA используется для объявления префиксов, полученных из Type 1 LSA и Type 2 LSA в другой области. Маршрутизатор границы области (ABR) — это устройство OSPF, которое разделяет области, и именно это устройство рекламирует Type 3 LSA. Изучите топологию OSPF, показанную на рисунке 1 ниже. Топология OSPF Рис. 1: Пример многозональной топологии OSPF Область 1 ABR будет посылать Type 3 LSA в область 0. ABR, соединяющий область 0 и область 2, отправил эти Type 3 LSA в область 2, чтобы обеспечить полную достижимость в домене OSPF. Type 3 LSA остаются Type 3 LSA во время этой пересылки. ASBR Summary (Type4) LSA - есть особая роль маршрутизатора OSPF, который называется пограничный маршрутизатор автономной системы Autonomous System Boundary Router (ASBR). Задача этого маршрутизатора заключается в том, чтобы ввести внешнюю префиксную информацию из другого домена маршрутизации. Для того чтобы сообщить маршрутизаторам в различных областях о существовании этого специального маршрутизатора, используется Type 4 LSA. Эта Summary LSA предоставляет идентификатор маршрутизатора ASBR. Таким образом, еще раз, Area Border Router отвечает за пересылку этой информации в следующую область, и это есть еще один пример inter-area LSA. External (Type 5) LSA - Таким образом, ASBR — это устройство, которое приносит префиксы из других доменов маршрутизации. Type 4 LSA описывает это устройство. Но какой LSA используется для реальных префиксов, поступающих из другого домена? Да, это Type 5 LSA. OSPF ASBR создает эти LSA, и они отправляются к Area Border Routers для пересылки в другие области. NSSA External (Type 7) LSA - в OSPF есть специальный тип области, называемый Not So Stubby Area (NSSA). Эта область может выступать заглушкой, но она также может вводить внешние префиксы из ASBR. Эти префиксы передаются как Type 7 LSA. Когда ABR получает эти Type 7 LSA, он отправляет по одному в другие области, такие как Type 5 LSA. Таким образом, обозначение Type 7 предназначено только для этой специальной области NSSA. Другие типы LSA. Существуют ли другие типы LSA? Да. Но мы не часто сталкиваемся с ними. Например, Type 6 LSA используется для многоадресной (Multicast) передачи OSPF, и эта технология не прижилась, позволяя Protocol Independent Multicast передаче победить. Для завершения ниже показан полный список всех возможных типов LSA: LSA Type 1: Router LSA LSA Type 2: Network LSA LSA Type 3: Summary LSA LSA Type 4: Summary ASBR LSA LSA Type 5: Autonomous system external LSA LSA Type 6: Multicast OSPF LSA LSA Type 7: Not-so-stubby area LSA LSA Type 8: External Attribute LSA for BGP LSA Type 9, 10, 11: "Opaque" LSA типы, используемые для конкретных прикладных целей OSPF ТИПЫ LSA И ТИПЫ AREA Одна из причин, по которой вы должны освоить различные типы LSA, заключается в том, что это поможет вам полностью понять потенциальную важность multi-area, особенно такого, который может включать специальные области. Ключом к важности специальных типов областей в OSPF является тот факт, что они инициируют автоматическую фильтрацию определенных LSA из определенных областей. Например, подумайте о области 1, присоединенной к основной области области 0. Type 1 LSA заполнил область 1. Если у нас есть широковещательные сегменты, мы также имеем Type 2 LSA, циркулирующие в этой области. Area Border Router посылает LSA Type 3 в магистраль для суммирования префиксной информации из области 1. Этот ABR также принимает эту информацию от магистрали для других областей, которые могут существовать. Если где-то в домене есть ASBR, наша область 1 получит LSA Type 4 и LSA Type 5, чтобы узнать местоположение этого ASBR и префиксы, которыми он делится с нами. Обратите внимание, что это является потенциальной возможностью для обмена большим количеством информации между областями. Именно поэтому у нас есть специальные типы зон! OSPF LSAS И STUB AREA (ЗАГЛУШКА) Для чего предназначена Stub Area? Мы не хотим слышать о тех префиксах, которые являются внешними для нашего домена OSPF. Помните, у нас был такой случай? Конечно, это LSA Type 5. На самом деле, мы даже не хотим слышать о тех LSA Type 4, которые используются для вызова ASBR в сети. Таким образом, Stub Area заполнена LSA Type 1, Type 2 и Type 3. На самом деле, как эта область могла бы добраться до одного из этих внешних префиксов, если бы это было необходимо? Для этого мы обычно используем очень специальный LSA Type 3. Этот LSA представляет маршрут по умолчанию (0.0.0.0 / 0). Именно этот удобный маршрут позволяет устройствам в этой области добраться до всех этих внешних объектов. На самом деле именно этот маршрутизатор используется для получения любого префикса, специально не определенного в базе данных маршрутизации (RIB). OSPF LSA И TOTALLY STUBBY AREA (ПОЛНОСТЬЮ КОРОТКАЯ ОБЛАСТЬ) Использование этой области имеют малые перспективы LSA. Использование этой области имеет смысл тогда, когда мы хотим снова заблокировать Type 4 и 5, но в данном случае мы блокируем даже LSA Type 3, которые описывают информацию префикса из других областей в нашем домене OSPF. Однако здесь имеется одно большое исключение. Нам нужен LSA Type 3 для маршрута по умолчанию, чтобы мы действительно могли добраться до других префиксов в нашем домене. OSPF LSAS И NOT SO STUBBY AREA И TOTALLY NOT SO STUBBY AREA Запомните, что Not So Stubby Area должна иметь LSA Type 7. Эти LSA Type 7 допускают распространение тех внешних префиксов, которые входят в ваш домен OSPF благодаря этой созданной вами области NSSA. Очевидно, что эта область также имеет Type 1, Type 2 и Type 3 внутри нее. Type 4 и Type 5 будут заблокированы для входа в эту область, как и ожидалось. Вы также можете создать Totally Not So Stubby Area, ограничив Type 3 из этой области. VIRTUAL LINKS Вспомните из нашего более раннего обсуждения OSPF, что все области в автономной системе OSPF должны быть физически связаны с основной областью (область 0). Там, где это невозможно, вы можете использовать виртуальную связь (virtual link) для подключения к магистрали через область, не являющуюся магистралью. Учтите следующие факты о virtual link: Они никогда не должны рассматриваться в качестве цели проектирования в ваших сетях. Они являются временным "исправлением" нарушения работы OSPF. Вы также можете использовать virtual link для соединения двух частей секционированной магистрали через область, не являющуюся магистралью. Область, через которую вы настраиваете virtual link, называемую транзитной областью, должна иметь полную информацию о маршруте. Транзитная зона не может быть stub area (заглушкой). Вы создаете virtual link с помощью команды в режиме конфигурации OSPF: area 1 virtual-link 3.3.3.3 Эта команда создает virtual link через область 1 с удаленным устройством OSPF с идентификатором маршрутизатора (Router ID) 3.3.3.3. Вы также настраиваете это удаленное устройство OSPF с помощью команды virtual-link. Например, если наше локальное устройство OSPF находится в Router ID 1.1.1.1, то соответствующая удаленная команда будет: area 1 virtual-link 1.1.1.1 Примечание: virtual link — это всего лишь один из способов наладки нарушений в работе OSPF. Вы также можете использовать туннель GRE для исправления сбоев в работе OSPF.
img
В сегодняшней статье, рассмотрим как настроить базовую станцию IP-DECT Grandstream DP715 и подружим её с IP-АТС Asterisk на базе FreePBX 13. Стоит отметить, что Grandstream придумали весьма оригинальное решение, сделав базовую станцию ещё и зарядным устройством для трубок DP710. На картинке ниже представлена трубка с базой DP715 и трубка DP710 с обычным зарядным стаканом. Настройка Управление базой происходит через web-интерфейс. Для того, чтобы в него попасть, требуется узнать IP-адрес, который присваивается автоматически. Чтобы узнать присвоенный базе IP-адрес, нужно воспользоваться трубкой, которая поставлялась вместе с базой. Как правило, эта трубка будет сразу зарегистрирована на базе. Всего на базовой станции DP715 можно зарегистрировать до 5 трубок и проводить до 4 одновременных вызовов. Для того, чтобы узнать IP-адрес базы нужно на трубке войти в меню голосовых подсказок, нажав ***, затем нажать 02, IP-адрес базы будет озвучен в трубке. Заносим его в адресную строку браузера, и перед нами открывается web -интерфейс базы. Пароль по умолчанию - admin. Первое, что мы увидим, это вкладка STATUS, здесь выводится вся информация о состоянии базы, а также трубках (Handset), которые на ней зарегистрированы. Как видно, пока на базе есть только Handset 1. Обратите также внимание, что в SIP Registrations пока стоит статус Not Registered, это потому, что у трубки ещё нет регистрации на SIP-сервере, в качестве которого у нас выступает IP-АТС Asterisk. На следующей вкладке, BASIC SETTINGS, настраиваются сетевые параметры базы. Здесь можно поменять её IP-адрес, задать настройки DNS, DHCP, языка интерфейса, времени и прочие. Вкладка ADVANCED SETTINGS позволяет задать расширенные параметры базовой станции. Тут можно сменить пароль администратора, настроить параметры QoS, аутентификации, поменять тональные частоты сигналов “Занято”, “КПВ” и многое другое. Также на данной вкладке можно обновлять прошивку базовой станции и настроить резервную копию конфигурации этого DECT решения. На вкладке PROFILE 1 задаются параметры для подключения к SIP-серверу. Поскольку в нашем случае, в качестве SIP-сервера выступает IP-АТС Asterisk, то в поле Primary SIP Server, необходимо указать его IP-адрес. Теперь база будет перенаправлять все SIP-запросы по данному адресу. Вкладка PROFILE 2может быть использована для настроек второго независимого SIP-сервера. Прежде чем переходить в настройки вкладки HANDSETS нужно создать внутренние номера Extensions на нашей IP-АТС. После того, как вы успешно создадите внутренние номера пользователей, можно переносить данные настроенных на IP-АТС внутренних номеров на базовую станцию во вкладке HANDSETS. Для каждой трубки, выбираем SIP-профиль того сервера, который будет использоваться. В нашем случае, это Profile 1. Всего можно зарегистрировать 5 трубок. Остаётся выполнить регистрацию трубок на базовой станции DP715. Для этого в меню трубки нужно выбрать Handset -> Registration-> Register-> Base 1,ввести PIN 0000 и нажать ОК. Важно! после регистрации каждой новой трубки, базу необходимо перезагружать. Если всё было сделано верно, то во вкладке STATUS мы увидим, что все трубки успешно зарегистрировались на базовой станции по статусу Subscribe -> Yes и успешно зарегистрировались на SIP-сервере - SIP Registration -> Registered.
img
В предыдущих статьях мы говорили о классическом связующем дереве и rapid spanning three. MST (Multiple Spanning Tree) - это третий вариант связующего дерева. Multiple Spanning Tree Взгляните на топологию выше. У нас есть три коммутатора и много VLAN. Всего существует 199 VLAN. Если мы запускаем PVST или Rapid PVST, это означает, что у нас имеется 199 различных вычислений для каждой VLAN. Это требует большой мощности процессора и памяти. Коммутатор B является корневым мостом для сети от VLAN 100 до VLAN 200. Это, означает, что интерфейс fa0/17 коммутатора A будет заблокирован. Мы будем иметь 100 вычислений связующего дерева, но все они выглядят одинаково для этих VLAN. То же самое относится и к VLAN 201 – 300. Коммутатор C является корневым мостом для VLAN от 201 до 300. Интерфейс fa0/14 на коммутаторе A, вероятно, будет заблокирован для всех этих VLAN. Два разных результата, но мы все еще имеем 199 различных вариантов исполнения связующего дерева. Это пустая трата мощности процессора и памяти, верно? MST (Multiple Spanning Tree) сделает это за нас. Вместо вычисления связующего дерева для каждой VLAN, мы можем использовать instance и карту VLAN для каждого instance. Для сети выше мы могли бы сделать что-то вроде этого: instance 1: VLAN 100-200 instance 2: VLAN 201-300 Логично, не так ли? Для всех этих VLAN требуется только два вычисления связующего дерева (instance). MST работает с концепцией регионов. Коммутаторы, настроенные для использования MST, должны выяснить, работают ли их соседи под управлением MST. Если коммутаторы имеют одинаковые атрибуты, они будут находиться в одном регионе. Это необходимо, чтобы была возможность разделения сети на один или несколько регионов. А вот атрибуты, которые должны соответствовать: MST имя конфигурации MST номер редакции конфигурации MST экземпляр в таблице сопоставления VLAN Если коммутаторы имеют одинаковые настроенные атрибуты, они будут находиться в одном регионе. Если атрибуты не совпадают, то коммутатор рассматривается как находящийся на границе области. Он может быть подключен к другому региону MST, но также разговаривать с коммутатором, работающим под управлением другой версии связующего дерева. Имя конфигурации MST — это то, что вы можете придумать, оно используется для идентификации региона MST. Номер версии конфигурации MST — это также то, что вы можете придумать, и идея этого номера заключается в том, что вы можете изменить номер всякий раз, когда вы меняете свою конфигурацию. VLAN будут сопоставлены с экземпляром с помощью таблицы сопоставления MST instance to VLAN. Это то, что мы должны сделать сами. Другие версии STP В пределах области MST у нас будет один instance связующего дерева, который создаст свободную от цикла топологию внутри области. При настройке MST всегда существует один instance по умолчанию, используемый для вычисления топологии в пределах региона. Мы называем это IST (внутреннее связующее дерево). По умолчанию Cisco будет использовать instance 0 для запуска IST. На случай, если вам интересно, это rapid spanning tree, которое мы запускаем в пределах MST. Мы могли бы создать instance 1 для VLAN 100-200 и instance 2 для VLAN 201-300. В зависимости от того, какой коммутатор станет корневым мостом для каждого instance, будет заблокирован различный порт. Коммутатор за пределами области MST не видит, как выглядит область MST. Для этого коммутатора все равно, что говорить с одним большим коммутатором или «черным ящиком».
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59