По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Хранилище сервера - важнейшая часть с точки зрения отказоустойчивости. При не надлежащей настройке дисков, данные могут быть утеряны. Полбеды, если вы храните там только игрули, сериальчики и фотографии из поездки в Туапсе в 2005 году, а что если это корпоративные данные? Поэтому, нужно быть уверенными, что если что - то случится с дисками, то данные не пропадут. Для этого используют технологию RAID (Redundant Array of Independent Disks) (не путать с RAID: Shadow Legends), или так называемый избыточный массив независимых дисков. В RAID одни и те же данные копируются сразу на множество дисков, так что, в случае, если один диск выйдет из строя, потери данных не будет - копия есть на другом носителе. Поговорим про четыре распространенных типа RAID массивов: RAID 0, RAID 1, RAID 5 и RAID 10. Видео: RAID 0, 1, 5 и 10 | Что это? RAID 0 Честно говоря, RAID 0 нифига не отказоустойчивый. Мы даже против того , чтобы RAID 0 имел название RAID. Скорее AID (Redundant Array of Independent Disks) 0. В нем цельные данные дробятся на блоки и частями записываются на 2 (два) или более диска. Тем самым, 2 физически отдельных диска, на самом деле, объединяются в один. И, например, если один из двух физических дисков случайно попадет под каток - вы потеряете все данные. Единственный случай, когда RAID 0 имеет смысл использовать, это если вы храните не критичные к потери данные к которым нужен доступ на высокой скорости. Да - да, RAID 0 имеет низкую отказоуйстойчивость, но высокую производительность. RAID 1 А вот это парень уже вполне отказоустойчив. RAID 1 кстати еще называют зеркальным, по вполне простой причине - данные синхронно записываются на 2 и более диска сразу: Тем самым, если один из дисков попадет в воду и выйдет из строя, данные не будут потеряны. Важный пункт - если вы собираете в RAID 1 массив 2 (два) диска, то в результате вы будете иметь только половину от их общей памяти. RAID 5 В пятом рэйде вам понадобятся 3 и более дисков. Он, кстати, один из наиболее распространенных рэйдов. Он работает быстро и может хранить много данных (в отличие от первого рэйда, например). В RAID 5 данные не копируются между всеми дисками, а как в RAID 0 последовательно записываются частями на каждый из дисков, но с одним дополнением - к данным так же равномерно записывается контрольная сумма, которая называется parity, которая нужна для восстановления данных в случае, если один из дисков отвалится. Важный недостаток RAID 5 в том, что это контрольная сумма занимает немало места. Например, если у вас 4 диска суммарным объемом в 4 терабайта, то использовать под хранение данных вы сможете только 3 терабайта - что около 75%. Остальное займет как раз контрольная сумма. RAID 10 Подходим к финалу - десятый рейд. Но не спешите, не такой уж он и десятый. Цифру 10 он имеет потому, что с точки зрения технологии, сочетает в себе функциональность RAID 1 и RAID 0. Создатели технологии уверены, что 1 + 0 = 10. Не будем их расстраивать, и разберемся в технологии. Для десятого рейда вам понадобится минимум 4 диска или больше, но всегда их количество должно быть четным. Говоря простым языком, 4 диска делятся на 2 группы, по 2 диска, и каждая из групп объединяется в отказоустойчивый RAID 1. Тем самым, мы имеем 2 зеркальных RAID 1 массива, которые в свою очередь, объединяются в RAID 0 массив - ну вы помните, где данные частями записываются на каждый из дисков. Только вместо дисков у нас по первому рэйду. Тем самым, 10ый рэйд имеет все скоростные преимущества RAID 0 и преимущество надежности RAID 1, но стоит как чугунный мост, так как опять же, под реальное хранение данных вы сможете использовать только 50% от общего объема всех дисков.
img
232 или 4 294 967 296 IPv4 адресов это много? Кажется, что да. Однако с распространением персональных вычислений, мобильных устройств и быстрым ростом интернета вскоре стало очевидно, что 4,3 миллиарда адресов IPv4 будет недостаточно. Долгосрочным решением было IPv6, но требовались более быстрое решение для устранения нехватки адресов. И этим решением стал NAT (Network Address Translation). Что такое NAT Сети обычно проектируются с использованием частных IP адресов. Это адреса 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16. Эти частные адреса используются внутри организации или площадки, чтобы позволить устройствам общаться локально, и они не маршрутизируются в интернете. Чтобы позволить устройству с приватным IPv4-адресом обращаться к устройствам и ресурсам за пределами локальной сети, приватный адрес сначала должен быть переведен на общедоступный публичный адрес. И вот как раз NAT переводит приватные адреса, в общедоступные. Это позволяет устройству с частным адресом IPv4 обращаться к ресурсам за пределами его частной сети. NAT в сочетании с частными адресами IPv4 оказался полезным методом сохранения общедоступных IPv4-адресов. Один общедоступный IPv4-адрес может быть использован сотнями, даже тысячами устройств, каждый из которых имеет частный IPv4-адрес. NAT имеет дополнительное преимущество, заключающееся в добавлении степени конфиденциальности и безопасности в сеть, поскольку он скрывает внутренние IPv4-адреса из внешних сетей. Маршрутизаторы с поддержкой NAT могут быть настроены с одним или несколькими действительными общедоступными IPv4-адресами. Эти общедоступные адреса называются пулом NAT. Когда устройство из внутренней сети отправляет трафик из сети наружу, то маршрутизатор с поддержкой NAT переводит внутренний IPv4-адрес устройства на общедоступный адрес из пула NAT. Для внешних устройств весь трафик, входящий и выходящий из сети, выглядит имеющим общедоступный IPv4 адрес. Маршрутизатор NAT обычно работает на границе Stub-сети. Stub-сеть – это тупиковая сеть, которая имеет одно соединение с соседней сетью, один вход и выход из сети. Когда устройство внутри Stub-сети хочет связываться с устройством за пределами своей сети, пакет пересылается пограничному маршрутизатору, и он выполняет NAT-процесс, переводя внутренний частный адрес устройства на публичный, внешний, маршрутизируемый адрес. Терминология NAT В терминологии NAT внутренняя сеть представляет собой набор сетей, подлежащих переводу. Внешняя сеть относится ко всем другим сетям. При использовании NAT, адреса IPv4 имеют разные обозначения, основанные на том, находятся ли они в частной сети или в общедоступной сети (в интернете), и является ли трафик входящим или исходящим. NAT включает в себя четыре типа адресов: Внутренний локальный адрес (Inside local address); Внутренний глобальный адрес (Inside global address); Внешний местный адрес (Outside local address); Внешний глобальный адрес (Outside global address); При определении того, какой тип адреса используется, важно помнить, что терминология NAT всегда применяется с точки зрения устройства с транслированным адресом: Внутренний адрес (Inside address) - адрес устройства, которое транслируется NAT; Внешний адрес (Outside address) - адрес устройства назначения; Локальный адрес (Local address) - это любой адрес, который отображается во внутренней части сети; Глобальный адрес (Global address) - это любой адрес, который отображается во внешней части сети; Рассмотрим это на примере схемы. На рисунке ПК имеет внутренний локальный (Inside local) адрес 192.168.1.5 и с его точки зрения веб-сервер имеет внешний (outside) адрес 208.141.17.4. Когда с ПК отправляются пакеты на глобальный адрес веб-сервера, внутренний локальный (Inside local) адрес ПК транслируется в 208.141.16.5 (inside global). Адрес внешнего устройства обычно не переводится, поскольку он является общедоступным адресом IPv4. Стоит заметить, что ПК имеет разные локальные и глобальные адреса, тогда как веб-сервер имеет одинаковый публичный IP адрес. С его точки зрения трафик, исходящий из ПК поступает с внутреннего глобального адреса 208.141.16.5. Маршрутизатор с NAT является точкой демаркации между внутренней и внешней сетями и между локальными и глобальными адресами. Термины, inside и outside, объединены с терминами local и global, чтобы ссылаться на конкретные адреса. На рисунке маршрутизатор настроен на предоставление NAT и имеет пул общедоступных адресов для назначения внутренним хостам. На рисунке показано как трафик отправляется с внутреннего ПК на внешний веб-сервер, через маршрутизатор с поддержкой NAT, и высылается и переводится в обратную сторону. Внутренний локальный адрес (Inside local address) - адрес источника, видимый из внутренней сети. На рисунке адрес 192.168.1.5 присвоен ПК – это и есть его внутренний локальный адрес. Внутренний глобальный адрес (Inside global address) - адрес источника, видимый из внешней сети. На рисунке, когда трафик с ПК отправляется на веб-сервер по адресу 208.141.17.4, маршрутизатор переводит внутренний локальный адрес (Inside local address) на внутренний глобальный адрес (Inside global address). В этом случае роутер изменяет адрес источника IPv4 с 192.168.1.5 на 208.141.16.5. Внешний глобальный адрес (Outside global address) - адрес адресата, видимый из внешней сети. Это глобально маршрутизируемый IPv4-адрес, назначенный хосту в Интернете. На схеме веб-сервер доступен по адресу 208.141.17.4. Чаще всего внешние локальные и внешние глобальные адреса одинаковы. Внешний локальный адрес (Outside local address) - адрес получателя, видимый из внутренней сети. В этом примере ПК отправляет трафик на веб-сервер по адресу 208.141.17.4 Рассмотрим весь путь прохождения пакета. ПК с адресом 192.168.1.5 пытается установить связь с веб-сервером 208.141.17.4. Когда пакет прибывает в маршрутизатор с поддержкой NAT, он считывает IPv4 адрес назначения пакета, чтобы определить, соответствует ли пакет критериям, указанным для перевода. В этом пример исходный адрес соответствует критериям и переводится с 192.168.1.5 (Inside local address) на 208.141.16.5. (Inside global address). Роутер добавляет это сопоставление локального в глобальный адрес в таблицу NAT и отправляет пакет с переведенным адресом источника в пункт назначения. Веб-сервер отвечает пакетом, адресованным внутреннему глобальному адресу ПК (208.141.16.5). Роутер получает пакет с адресом назначения 208.141.16.5 и проверяет таблицу NAT, в которой находит запись для этого сопоставления. Он использует эту информацию и переводит обратно внутренний глобальный адрес (208.141.16.5) на внутренний локальный адрес (192.168.1.5), и пакет перенаправляется в сторону ПК. Типы NAT Существует три типа трансляции NAT: Статическая адресная трансляция (Static NAT) - сопоставление адресов один к одному между локальными и глобальными адресами; Динамическая адресная трансляция (Dynamic NAT) - сопоставление адресов “многие ко многим” между локальными и глобальными адресами; Port Address Translation (PAT) - многоадресное сопоставление адресов между локальными и глобальными адресами c использованием портов. Также этот метод известен как NAT Overload; Static NAT Статический NAT использует сопоставление локальных и глобальных адресов один к одному. Эти сопоставления настраиваются администратором сети и остаются постоянными. Когда устройства отправляют трафик в Интернет, их внутренние локальные адреса переводятся в настроенные внутренние глобальные адреса. Для внешних сетей эти устройства имеют общедоступные IPv4-адреса. Статический NAT особенно полезен для веб-серверов или устройств, которые должны иметь согласованный адрес, доступный из Интернета, как например веб-сервер компании. Статический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя. Статическая NAT таблица выглядит так: Dynamic NAT Динамический NAT использует пул публичных адресов и назначает их по принципу «первым пришел, первым обслужен». Когда внутреннее устройство запрашивает доступ к внешней сети, динамический NAT назначает доступный общедоступный IPv4-адрес из пула. Подобно статическому NAT, динамический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя. Динамическая NAT таблица выглядит так: Port Address Translation (PAT) PAT транслирует несколько частных адресов на один или несколько общедоступных адресов. Это то, что делают большинство домашних маршрутизаторов. Интернет-провайдер назначает один адрес маршрутизатору, но несколько членов семьи могут одновременно получать доступ к Интернету. Это наиболее распространенная форма NAT. С помощью PAT несколько адресов могут быть сопоставлены с одним или несколькими адресами, поскольку каждый частный адрес также отслеживается номером порта. Когда устройство инициирует сеанс TCP/IP, оно генерирует значение порта источника TCP или UDP для уникальной идентификации сеанса. Когда NAT-маршрутизатор получает пакет от клиента, он использует номер своего исходного порта, чтобы однозначно идентифицировать конкретный перевод NAT. PAT гарантирует, что устройства используют разный номер порта TCP для каждого сеанса. Когда ответ возвращается с сервера, номер порта источника, который становится номером порта назначения в обратном пути, определяет, какое устройство маршрутизатор перенаправляет пакеты. Картинка иллюстрирует процесс PAT. PAT добавляет уникальные номера портов источника во внутренний глобальный адрес, чтобы различать переводы. Поскольку маршрутизатор обрабатывает каждый пакет, он использует номер порта (1331 и 1555, в этом примере), чтобы идентифицировать устройство, с которого выслан пакет. Адрес источника (Source Address) - это внутренний локальный адрес с добавленным номером порта, назначенным TCP/IP. Адрес назначения (Destination Address) - это внешний локальный адрес с добавленным номером служебного порта. В этом примере порт службы 80: HTTP. Для исходного адреса маршрутизатор переводит внутренний локальный адрес во внутренний глобальный адрес с добавленным номером порта. Адрес назначения не изменяется, но теперь он называется внешним глобальным IP-адресом. Когда веб-сервер отвечает, путь обратный. В этом примере номера портов клиента 1331 и 1555 не изменялись на маршрутизаторе с NAT. Это не очень вероятный сценарий, потому что есть хорошая вероятность того, что эти номера портов уже были прикреплены к другим активным сеансам. PAT пытается сохранить исходный порт источника. Однако, если исходный порт источника уже используется, PAT назначает первый доступный номер порта, начиная с начала соответствующей группы портов 0-511, 512-1023 или 1024-65535. Когда портов больше нет, и в пуле адресов имеется более одного внешнего адреса, PAT переходит на следующий адрес, чтобы попытаться выделить исходный порт источника. Этот процесс продолжается до тех пор, пока не будет доступных портов или внешних IP-адресов. То есть если другой хост может выбрать тот же номер порта 1444. Это приемлемо для внутреннего адреса, потому что хосты имеют уникальные частные IP-адреса. Однако на маршрутизаторе NAT номера портов должны быть изменены - в противном случае пакеты из двух разных хостов выйдут из него с тем же адресом источника. Поэтому PAT назначает следующий доступный порт (1445) на второй адрес хоста. Подведем итоги в сравнении NAT и PAT. Как видно из таблиц, NAT переводит IPv4-адреса на основе 1:1 между частными адресами IPv4 и общедоступными IPv4-адресами. Однако PAT изменяет как сам адрес, так и номер порта. NAT перенаправляет входящие пакеты на их внутренний адрес, ориентируясь на входящий IP адрес источника, заданный хостом в общедоступной сети, а с PAT обычно имеется только один или очень мало публично открытых IPv4-адресов, и входящие пакеты перенаправляются, ориентируясь на NAT таблицу маршрутизатора. А что относительно пакетов IPv4, содержащих данные, отличные от TCP или UDP? Эти пакеты не содержат номер порта уровня 4. PAT переводит наиболее распространенные протоколы, переносимые IPv4, которые не используют TCP или UDP в качестве протокола транспортного уровня. Наиболее распространенными из них являются ICMPv4. Каждый из этих типов протоколов по-разному обрабатывается PAT. Например, сообщения запроса ICMPv4, эхо-запросы и ответы включают идентификатор запроса Query ID. ICMPv4 использует Query ID. для идентификации эхо-запроса с соответствующим ответом. Идентификатор запроса увеличивается с каждым отправленным эхо-запросом. PAT использует идентификатор запроса вместо номера порта уровня 4. Преимущества и недостатки NAT NAT предоставляет множество преимуществ, в том числе: NAT сохраняет зарегистрированную схему адресации, разрешая приватизацию интрасетей. При PAT внутренние хосты могут совместно использовать один общедоступный IPv4-адрес для всех внешних коммуникаций. В этом типе конфигурации требуется очень мало внешних адресов для поддержки многих внутренних хостов; NAT повышает гибкость соединений с общедоступной сетью. Многочисленные пулы, пулы резервного копирования и пулы балансировки нагрузки могут быть реализованы для обеспечения надежных общедоступных сетевых подключений; NAT обеспечивает согласованность для внутренних схем адресации сети. В сети, не использующей частные IPv4-адреса и NAT, изменение общей схемы адресов IPv4 требует переадресации всех хостов в существующей сети. Стоимость переадресации хостов может быть значительной. NAT позволяет существующей частной адресной схеме IPv4 оставаться, позволяя легко изменять новую схему общедоступной адресации. Это означает, что организация может менять провайдеров и не нужно менять ни одного из своих внутренних клиентов; NAT обеспечивает сетевую безопасность. Поскольку частные сети не рекламируют свои адреса или внутреннюю топологию, они остаются достаточно надежными при использовании в сочетании с NAT для получения контролируемого внешнего доступа. Однако нужно понимать, что NAT не заменяет фаерволы; Но у NAT есть некоторые недостатки. Тот факт, что хосты в Интернете, по-видимому, напрямую взаимодействуют с устройством с поддержкой NAT, а не с фактическим хостом внутри частной сети, создает ряд проблем: Один из недостатков использования NAT связан с производительностью сети, особенно для протоколов реального времени, таких как VoIP. NAT увеличивает задержки переключения, потому что перевод каждого адреса IPv4 в заголовках пакетов требует времени; Другим недостатком использования NAT является то, что сквозная адресация теряется. Многие интернет-протоколы и приложения зависят от сквозной адресации от источника до места назначения. Некоторые приложения не работают с NAT. Приложения, которые используют физические адреса, а не квалифицированное доменное имя, не доходят до адресатов, которые транслируются через NAT-маршрутизатор. Иногда эту проблему можно избежать, реализуя статические сопоставления NAT; Также теряется сквозная трассировка IPv4. Сложнее трассировать пакеты, которые подвергаются многочисленным изменениям адресов пакетов в течение нескольких NAT-переходов, что затрудняет поиск и устранение неполадок; Использование NAT также затрудняет протоколы туннелирования, такие как IPsec, поскольку NAT изменяет значения в заголовках, которые мешают проверкам целостности, выполняемым IPsec и другими протоколами туннелирования; Службы, требующие инициирования TCP-соединений из внешней сети, или stateless протоколы, например, использующие UDP, могут быть нарушены. Если маршрутизатор NAT не настроен для поддержки таких протоколов, входящие пакеты не могут достичь своего адресата; Мы разобрали основные принципы работы NAT. Хотите больше? Прочитайте нашу статью по настройке NAT на оборудовании Cisco.
img
Разработчики программного обеспечения должны держать много информации у себя в голове. Существует множество вопросов, которые нужно задать, когда речь заходит о создании веб-сайта или приложения: Какие технологии использовать? Как будет настроена структура? Какой функционал нам нужен? Как будет выглядеть пользовательский интерфейс? Особенно на рынке программного обеспечения, где производство приложений больше похоже на гонку за репутацией, чем на хорошо обдуманный процесс, один из важнейших вопросов, который часто остается на дне “Списка важных”: Как наш продукт будет защищен? Если вы используете надежный, открытый фреймворк для создания своего продукта (и, если он доступен и пригоден, почему бы и нет?), тогда базовые проблемы безопасности, как атаки CSFR и кодирование пароля, могут быть уже решены за вас. Тем не менее, быстро развивающимся разработчикам будет полезно освежить свои знания о стандартных угрозах, дабы избежать ошибок новичка. Обычно самое слабое место в безопасности вашего программного обеспечения - это вы. А кто может заниматься взломом?. Есть этичный хакер – это тот, кто ищет возможные слабости в безопасности и приватно рассказывает их создателям проекта. А чёрный хакер, которого так же зовут “Взломщик (cracker)” – это тот, кто использует эти слабости для вымогательства или собственного блага. Эти два вида хакеров могут использовать одинаковый набор инструментов и, в общем, пытаются попасть в такие места, куда обычный пользователь не может попасть. Но белые хакеры делают это с разрешением, и в интересах усиления защиты, а не уничтожения её. Черные хакеры – плохие ребята. Вот некоторые примеры наиболее распространённых атаках, которые используют слабости в защите: Внедрение SQL-кода и межсайтовый скриптинг XXS. SQL атаки SQL-инъекция (SQLi) - это тип инъекционной атаки, которая позволяет выполнять вредоносные SQL команды, для получения данных или вывода из строя приложения. По сути, злоумышленники могут отправлять команды SQL, которые влияют на ваше приложение, через некоторые входные данные на вашем сайте, например, поле поиска, которое извлекает результаты из вашей базы данных. Сайты, закодированные на PHP, могут быть особенно восприимчивы к ним, и успешная SQL-атака может быть разрушительной для программного обеспечения, которое полагается на базу данных (например, ваша таблица пользователей теперь представляет собой пустое место). Вы можете проверить свой собственный сайт, чтобы увидеть, насколько он восприимчив к такого рода атакам. (Пожалуйста, тестируйте только те сайты, которыми вы владеете, так как запуск SQL-кодов там, где у вас нет разрешения на это, может быть незаконным в вашем регионе; и определенно, не очень смешно.) Следующие полезные нагрузки могут использоваться для тестов: ' OR 1='1 оценивается как константа true, и в случае успеха возвращает все строки в таблице ' AND 0='1 оценивается как константа false, и в случае успеха не возвращает строк. К счастью, есть способы ослабить атаки SQL-кода, и все они сводятся к одной основной концепции: не доверяйте вводимым пользователем данным. Смягчение последствий SQL-кодов. Чтобы эффективно сдержать атаки, разработчики должны запретить пользователям успешно отправлять необработанные SQL-команды в любую часть сайта. Некоторые фреймворки сделают большую часть тяжелой работы за вас. Например, Django реализует концепцию объектно-реляционного отображения, или ORM с использованием наборов запросов. Мы будем рассматривать их в качестве функций-оболочек, которые помогают вашему приложению запрашивать базу данных с помощью предопределенных методов, избегая использование необработанного SQL. Однако возможность использовать фреймворк никогда не является гарантией. Когда мы имеем дело непосредственно с базой данных, существуют и другие методы, которые мы можем использовать, чтобы безопасно абстрагировать наши SQL-запросы от пользовательского ввода, хотя они различаются по эффективности. Они представлены по порядку от более к менее важному: Подготовленные операторы с переменной привязкой (или параметризованные запросы) Хранимые процедуры Белый список или экранирование пользовательского ввода Если вы хотите реализовать вышеприведенные методы, то эти шпаргалки - отличная отправная точка для более глубокого изучения. Достаточно сказать, что использование этих методов для получения данных вместо использования необработанных SQL-запросов помогает свести к минимуму вероятность того, что SQL будет обрабатываться любой частью вашего приложения, которая принимает входные данные от пользователей, тем самым смягчая атаки SQL-кодов. Межсайтовые скриптовые атаки (XSS) Если вы являетесь хакером, то JavaScript - это в значительной степени ваш лучший друг. Правильные команды будут делать все, что может сделать обычный пользователь (и даже некоторые вещи, которые он не должен делать) на веб-странице, иногда без какого-либо взаимодействия со стороны реального пользователя. Межсайтовые скриптовые атаки, или XSS, происходят, когда код JavaScript вводится на веб-страницу и изменяет ее поведение. Его последствия могут варьироваться от появления неприятных шуток до более серьезных обходов аутентификации или кражи учетных данных. XSS может происходить на сервере или на стороне клиента и, как правило, поставляется в трех вариантах: DOM (Document Object Model - объектная модель документа) на основе хранимых и отображаемых XSS. Различия сводятся к тому, где полезная нагрузка атаки вводится в приложение. XSS на основе DOM XSS на основе DOM возникает, когда полезная нагрузка JavaScript влияет на структуру, поведение или содержимое веб-страницы, загруженной пользователем в свой браузер. Они чаще всего выполняются через измененные URL-адреса, например, в фишинговых письмах. Чтобы увидеть, насколько легко было бы для введенного JavaScript манипулировать страницей, мы можем создать рабочий пример с веб-страницей HTML. Попробуйте создать файл в локальной системе под названием xss-test.html (или любым другим) со следующим кодом HTML и JavaScript: <html> <head> <title>My XSS Example</title> </head> <body> <h1 id="greeting">Hello there!</h1> <script> var name = new URLSearchParams(document.location.search).get('name'); if (name !== 'null') { document.getElementById('greeting').innerHTML = 'Hello ' + name + '!'; } </script> </h1> </html> На этой веб-странице будет отображаться заголовок "Hello!” если только он не получает параметр URL из строки запроса со значением name. Чтобы увидеть работу скрипта, откройте страницу в браузере с добавленным параметром URL, например: file:///path/to/file/xss-test.html?name=Victoria Наша небезопасная страница принимает значение параметра URL для имени и отображает его в DOM. Страница ожидает, что значение будет хорошей дружественной строкой, но что, если мы изменим его на что-то другое? Поскольку страница принадлежит нам и существует только в нашей локальной системе, мы можем тестировать ее сколько угодно. Что произойдет, если мы изменим параметр name, скажем, на: <img+src+onerror=alert("pwned")> Это всего лишь один пример, который демонстрирует, как может быть выполнена атака XSS. Смешные всплывающие оповещения могут быть забавными, но JavaScript может принести много вреда, в том числе помогая злоумышленникам украсть пароли и личную информацию. Хранимые и отраженные XSS Хранимые (stored) XSS возникают, когда полезная нагрузка атаки хранится на сервере, например, в базе данных. Атака влияет на жертву всякий раз, когда эти сохраненные данные извлекаются и отображаются в браузере. Например, вместо того чтобы использовать строку URL-запроса, злоумышленник может обновить свою страницу профиля на социальном сайте, чтобы внедрить скрытый сценарий, скажем, в раздел “Обо мне”. Сценарий, неправильно сохраненный на сервере сайта, будет успешно выполняться всё время, пока другой пользователь просматривает профиль злоумышленника. Одним из самых известных примеров этого является червь Samy, который практически захватил MySpace в 2005 году. Он распространялся путем отправки HTTP-запросов, которые копировали его на страницу профиля жертвы всякий раз, когда просматривался зараженный профиль. Всего за 20 часов он распространился на более чем миллион пользователей. Отраженные (reflected) XSS аналогично возникают, когда введенные данные перемещаются на сервер, однако вредоносный код не сохраняется в базе данных. Вместо этого он немедленно возвращается в браузер веб-приложением. Подобная атака может быть осуществлена путем заманивания жертвы для перехода по вредоносной ссылке, которая отправляет запрос на сервер уязвимого веб-сайта. Затем сервер отправит ответ злоумышленнику, а также жертве, что может привести к тому, что злоумышленник сможет получить пароли или совершить действия, которые якобы исходят от жертвы. Ослабление XSS Во всех этих случаях XSS могут быть сдержаны с помощью двух ключевых стратегий: проверка полей формы и предотвращение прямого ввода данных пользователем на веб-странице. Проверка полей формы Фреймворки снова могут нам помочь, когда речь заходит о том, чтобы убедиться, что представленные пользователем формы находятся в актуальном состоянии. Один из примеров - встроенные классы полей Django, которые предоставляют поля, проверяющие некоторые часто используемые типы, а также задают нормальные значения по умолчанию. Например, поле электронной почты Django использует набор правил, чтобы определить, является ли предоставленный ввод действительным письмом. Если отправленная строка содержит символы, которые обычно не присутствуют в адресах электронной почты, или если она не имитирует общий формат адреса электронной почты, то Django не будет считать это поле допустимым и форма не будет отправлена. Если вы не можете полагаться на фреймворк, можете реализовать вашу собственную проверку входных данных. Это можно сделать с помощью нескольких различных методов, включая преобразование типа, например, гарантируя, что число имеет тип int(); проверка минимальных и максимальных значений диапазона для чисел и длин строк; использование заранее определенного массива вариантов, который позволяет избежать произвольного ввода, например, месяцев года; и проверка данных на соответствие строгим регулярным формулировкам. К счастью, нам не нужно начинать все с нуля. Помогут доступные ресурсы с открытым исходным кодом, такой как валидация репозитория регулярных выражений OWASP, который предоставляет шаблоны для сопоставления их с некоторыми распространенными формами данных. Многие языки программирования предлагают библиотеки проверки, специфичные для их синтаксиса, и мы можем найти множество таких библиотек на GitHub. Хотя это и может показаться утомительным, правильно реализованная проверка ввода может защитить наше приложение от восприимчивости к XSS. Предотвращение прямого ввода данных Элементы приложения, которые непосредственно возвращают пользовательский ввод в браузер, при обычной проверке могут быть неочевидны. Мы можем определить области приложения, которые могут быть подвержены риску, изучив несколько вопросов: Как происходит поток данных через приложение? Что ожидает пользователь, когда он взаимодействует с этими входными данными? Где на нашей странице появляются данные? Становятся ли они встроенными в строку или атрибут? Вот некоторые примеры полезных нагрузок, с которыми мы можем поиграть, чтобы проверить входные данные на нашем сайте (опять же, только на нашем собственном сайте!). Успешное выполнение любого из этих образцов может указывать на возможную уязвимость к XSS из-за прямого ввода данных. "><h1>test</h1> '+alert(1)+' "onmouserover="alert(1) http://"onmouseover="alert(1) Как правило, если вы можете обойти прямой ввод данных, сделайте это. Кроме того, убедитесь, что вы полностью понимаете эффективность выбранных методов; например, использование innerText вместо innerHTML в JavaScript гарантирует, что содержимое будет задано как обычный текст вместо (потенциально уязвимого) HTML. Аккуратнее с вводом! Разработчики программного обеспечения явно находятся в невыгодном положении, когда речь заходит о конкуренции с черными хакерами. Несмотря на всю проделанную работу по защитите каждого ввода, который потенциально может скомпрометировать наше приложение, злоумышленнику достаточно только найти тот, который мы пропустили. Это все равно что установить засовы на всех дверях, но оставить окно открытым! Однако, научившись мыслить в том же ключе, что и злоумышленник, мы можем лучше подготовить наше программное обеспечение к противостоянию плохим парням. Как бы ни было интересно добавлять функции как можно быстрее, мы избежим большого количества долгов по кибербезопасности, если заранее продумаем поток нашего приложения, проследим за данными и обратим внимание на наши входные данные.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59