По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Зачастую приходится сталкиваться с ситуациями, когда необходимо выбрать бесплатный, но в тоже время, простой и качественный программный телефон (софтфон) для своей компании, который бы поддерживал ключевой функционал, требующийся любому современному бизнесу, такой как перевод звонка, организация конференций, постановка звонка на удержание и прочие. Если Вы столкнулись с такой задачей, то рекомендуем Вам обратить внимание на программный клиент VoIP-телефонии- PhonerLite. В статье мы расскажем об установке и настройке этого софтфона для работы с IP – АТС Asterisk Немного теории PhonerLite – это бесплатное приложение программного телефона, предназначенное для работы под управлением операционной системы Windows. Для передачи сигнальной информации, используется протокол SIP (Session Initiation Protocol), для передачи потоков медиа-данных используется стандартный RTP (Real-time Transport Protocol), имеется поддержка более защищенных средств шифрования информации, такие как SRTP (Secure Real-time Transport Protocol) и ZRTP. Список поддерживаемых аудио-кодеков: G.711 A-law; G.711 ?-law; G.722, G.726; GSM; iLBC; Speex; Opus. Имеется поддержка IPv6. В качестве транспорта, телефон может использовать UDP, TCP и TLS. Cофтфон PhonerLite распространяется абсолютно бесплатно по лицензии Freeware, как для личного так и для коммерческого использования. Разработка PhonerLite не стоит на месте: согласно официальному сайту, выходят постоянные обновления, добавляющие новый функционал или же исправляющие выявленные ранее баги. Последнее обновление было 27 сентября 2016 года (дата написания этой статьи 12 октября 2016). Дистрибутив PhonerLite можно скачать с официального сайта разработчика, последняя доступная версия от 27.09.2016 – 2.43. Скачать софтфон PhonerLite Настройка программного телефона После того как мы скачали и установили PhonerLite, нас встречает мастер настройки, который предлагает настроить учетную запись SIP для одного из известных VoIP-провайдеров или же продолжить в режиме ручной настройки. Мы будем использовать свою IP-АТС Asterisk, поэтому, выбираем ручную настройку и указываем IP-адрес нашего сервера и стандартный порт 5061 (используется CHAN_SIP со стороны Asterisk), куда софтфон будет отправлять запросы на регистрацию. Далее указываем имя пользователя, который предварительно уже создан на нашем Asterisk в качестве внутреннего номера (Extension). В нашем случае это номер 1021. На скриншоте с интерфейса FreePBX, красным цветом выделен номер, который мы будем применять в качестве имени пользователя и логина. Далее предлагается выбрать устройство ввода звука на вашем компьютере. Подтверждаем выполненные настройки. Также предлагается дать название новому профилю. Советуем придумать какое-либо название, потому что по умолчанию профиль будет иметь название соответствующее IP-адресу вашей IP-АТС. Если все настройки были выполнены правильно, то напротив новой учётной записи мы увидим сообщение Registered, свидетельствующее о том, что софтфон успешно зарегистрировался на IP-АТС, теперь можно совершать звонки. В заключение хотелось бы отметить, что PhonerLite хорош ещё и тем, что в отличие от других аналогичных разработок данный софтфон не требует покупки дополнительных лицензий для доступа к расширенному функционалу. Все критически важные функции, такие как перевод звонка, организация конференции, установка на удержание, адресная книга, история звонков, доступны сразу же после установки.
img
Edge computing (дословно можно перевести как "граничные вычисления") - это сетевая философия, основанная на том, что вычисления должны совершаться как можно ближе к источнику сырых данных. Цель сего действа в сильном сокращении задержек и ширины канала связи. Если говорить проще, то edge computing - это когда меньше всякой всячины вычисляется к облаке или ЦОДе, и больше вычисляется непосредственно на месте - то есть на локальном ПК, IoT устройстве или на граничном сервере. Таким образом сокращается необходимость поддерживать в требуемом состоянии дорогостоящие каналы связи (представьте себе, что для вычислений отправляете очень объемную информацию - к примеру, видео высокой четкости) Что такое граница сети? Для устройств, подключенных к сети Интернет, границей будет точка, где это устройства непосредственно подключается к Интернету. Конечно, определение экстремально размытое; к примеру, компьютер пользователя или процессор внутри IoT камеры могут быть теми самыми точками, однако, сетевой маршрутизатор также вполне попадает под это определение. Но важно одно: граница будет гораздо ближе к устройству (с географической точки зрения), нежели к облачным серверам. Приведем пример edge computing-а Представим себе некое здание, в котором понаставили десятки IoT камер очень высокого разрешения. Эти камеры относительно безмозглые, т.к они просто отдают сырой видеосигнал на облако. Облако, в свою очередь, пропускает весь этот сырой видео трафик через приложение, которое умеет определять движение, чтобы хранить только максимально полезную информацию. Представьте себе требованию к Интернет-каналу в таком случае: ежесекундно передаются мегабайты информации, и к тому же получается высокая нагрузка на облачные сервера, которые занимаются вычислениями - они обязаны обрабатывать все эти огромные объемы информации. А теперь представьте себе, что сервер, определяющий движение был помещен на границу сети (той самой, в которой находится наше воображаемое здание). Что если каждая камера будет использовать свои собственные вычислительные мощности для запуска там приложения, которое будет определять движение? Очевидно, тогда в облако будет уходить только "полезный" трафик. Кроме того, на облачные сервера ляжет только задача по хранению важной информации, что де-факто означает возможность этого облака поддерживать связь с гораздо большим количеством камер без перегрузки. Вот примерно так и выглядит пример edge computing. Преимущества концепции edge computing Как видно в примере выше, данный концепт позволяет минимизировать загрузку Интернет-канала и нагрузку на вычислительные мощности облака. Полоса пропускания и вычислительные мощности, к сожалению, конечны и стоят реальных денег. С каждым зданием и офисом, которые будут оборудованы "умными" камерами, принтерами, термостатами и даже тостерами, аналитики предсказывают, что к 2025 году в мире будет установлено 75 миллиардов IoT устройств. Чтобы все эти устройства корректно работали, большой процент вычислений должен быть перенесен на edge-и. Следующее преимущество - это снижение задержки. Каждый раз, когда устройство пытается подключиться к какому-нибудь удаленному серверу, появляется задержка. Гипертрофированный пример: когда двое коллег в одном офисе чатятся в аське, они могут почувствовать сильную задержку, так как каждое сообщение "улетает" во внешний мир, подключается к некому очень удаленному серверу и также возвращается обратно в эту сеть. Если бы весь этот процесс происходил на границе сети, то эта задержка могла бы быть значительно снижена. Также, когда пользователи используют тонны веб-приложений, которые постоянно подключаются к внешним серверам, они могут чувствовать эти самые задержки. Длительность задержек будет зависеть от того, какова их полоса пропускания и где находятся сервера, но этих задержек можно легко избежать. Правильно, если воткнуть все эти сервера на границу этой сети. Если подытожить, то общие плюсы этого концепта таковы: Снижение задержек Снижение затрат путем использования более дешевых каналов связи Снижение затрат путем уменьшения нагрузки на удаленные вычислительные ресурсы Минусы данного подхода На мой взгляд, есть два основных минуса: первый - это сильное увеличение сложности устройств и повышенный риск компрометации этих устройств - по сути, даже банальный термостат становится полноценным компьютером, который, как мы все знаем, может быть легко подвергнут взлому. Кроме того, из-за увеличения сложности устройств и повышения их вычислительной мощности серьезно возрастает их стоимость. Однако очевидно, что технологии шагают семимильными шагами - компьютер 30 лет назад был в тысячи раз слабее современного смартфона, а стоили они гораздо дороже.
img
Стандарт JSON Web Tokens (JWT) – это лаконичный метод передачи данных, поддающихся проверке. Каждый токен содержит подпись, с помощью которой эмитент может проверить целостность сообщения. С помощью этой статьи вы можете узнать, что из себя представляет структура JWT и как можно создать свои собственные токены. JWT – это популярный способ защиты API и аутентификации сеансов пользователей, так как они достаточно просты и являются автономными.  Как работают JWT? Одна из самых распространенных задач в любом API – это проверка того факта, что пользователи являются теми, за кого себя выдают. Как правило, аутентификация выполняется тогда, когда клиент использует ключ API для запросов, которые он отправляет на сервер. Этот ключ содержит информацию, которая подтверждает личность пользователя. Но все еще остается вопрос: как сервер проверяет, что пользователь сначала предоставил ключ? JWT с легкостью решают эту проблему с помощью секретного ключа, который используется для подписи каждого токена. Сервер проверяет действительность токена, повторно пересчитывая подпись с помощью своего секретного ключа. Любое несанкционированное вмешательство приведет к тому, что проверка не будет выполнена.  Структура JWT JWT состоят из трех отдельных компонентов: Заголовок (header) – содержит метаданные о токене, например, алгоритм подписи, который был использован. Полезная нагрузка (payload) – в качестве полезной нагрузки могут выступать любые случайные данные, которые так или иначе относятся к вашей системе. Полезная нагрузка может содержать ID пользователя и набор определенных функций, с которыми пользователь может взаимодействовать.  Подпись (signature) – подпись позволяет в дальнейшем проверить целостность токена. Подпись создается путем подписания заголовка и полезной нагрузки с помощью секретного ключа, который знает только сервер.  Для того, чтобы сформировать JWT, все эти три компонента нужно записать через точку: header.payload.signature Каждый компонент кодируется с помощью стандарта Base-64. Готовый токен представляет собой строку текста, которую можно использовать в средах разработки программ и отправлять вместе с HTTP-запросами.  Создание JWT Создать JWT можно на любом языке программирования. В данном случае мы будем использовать PHP, но вы можете использовать и другой язык, процесс будет аналогичным.  Начнем с создания заголовка. Как правило, он включает в себя два поля –  alg и  typ : alg – это алгоритм хеширования, который мы будем использовать для создания подписи. Как правило, используют HMAC SHA256 ( HS256 ). typ – это тип токена, который мы создаем. Здесь мы должны указать  JWT . Вот так выглядит объект JSON, который определяет заголовок: {    "alg": "HS256",    "typ": "JWT" } Заголовок необходимо закодировать с помощью Base-64: $headerData = ["alg" => "HS256", "typ" => "JWT"]; $header = base64_encode(json_encode($headerData)); Затем нам необходимо определить еще один объект JSON - полезную нагрузку токена. Что из себя будет представлять полезная нагрузка зависит от приложения. В данном примере мы используем информацию об учетной записи аутентифицированного пользователя и информацию о самом токене.  exp ,  iat и  nbf – это условные поля, которые используются для того, чтобы указать время истечения срока действия токена, время его создания и момент времени (начальный), до которого он считается недействительным. Полезную нагрузку также необходимо закодировать с помощью Base-64. $payloadData = [    "userId" => 1001,    "userName" => "demo",    "licensedFeatures" => ["todos", "calendar", "invoicing"],    "exp" => (time() + 900),    "iat" => time(),    "nbf" => time() ]; $payload = base64_encode(json_encode($payloadData)); Нам остается только создать подпись. Для этого сначала нужно объединить заголовок и полезную нагрузку в одну сроку, разделив их точкой: $headerAndPayload = "$header.$payload"; Затем мы должны сгенерировать уникальный секретный ключ, который мы будем использовать в качестве секретного ключа подписи. Этот ключ должен надежно храниться на вашем сервере, и его ни в коем случае нельзя передавать клиентам. Если значение секретного ключа будет раскрыто, то любой пользователь сможет создавать действительные токены.  // PHP method to generate 32 random characters $secret = bin2hex(openssl_random_pseudo_bytes(16)); И мы завершаем процесс с помощью подписи объединенной строки (заголовка и полезной нагрузки) с помощью секретного ключа. Для этого мы будем использовать алгоритм хеширования, который мы указали в заголовке. Получившаяся подпись также, как и другие компоненты, должна быть закодирована с помощью Base-64.  $signature = base64_encode(hash_hmac("sha256", $headerAndPayload, $secret, true)); Итак, у нас теперь есть заголовок, полезная нагрузка и подпись. Они представляют собой отдельные текстовые компоненты. Для того, чтобы создать JWT, мы должны объединить из с помощью точки. И теперь мы можем отправить его клиенту: $jwt = "$header.$payload.$signature"; Проверка входящих JWT Клиентское приложение может определить, какие функции доступны пользователю, если расшифрует полезную нагрузку токена. Вот пример, написанный на JavaScript: const tokenComponents = jwt.split("."); const payload = token[1]; const payloadDecoded = JSON.parse(atob(payload)); // ["todos", "calendar", "invoicing"] console.log(payloadDecoded.licensedFeatures); Злоумышленник может подумать, что эти данные представляют собой простой текст и его легко изменить. Он может попробовать убедить сервер в том, что у него есть некая дополнительная доступная ему функция, изменив полезную нагрузку токена в своем запросе: // Create a new payload component const modifiedPayload = btoa(JSON.stringify({    ...payloadDecoded,    licensedFeatures: ["todos", "calendar", "invoicing", "extraPremiumFeature"] })); // Stitch the JWT back together with the original header and signature const newJwt = `${token[0]}.${modifiedPayload}.${token[2]}` Как же сервер защищается от подобных атак? Ответ заключается в процессе создания подписи. Значение подписи учитывает, как заголовок токена, так и его полезную нагрузку. В случае данного примера изменение полезной нагрузки ведет к тому, что подпись становится недействительной.  Серверная программа проверяет входящие JWT путем пересчета их подписей. Если подпись, отправленная клиентом, не совпадает с подписью, посчитанной на сервере, то можно сделать вывод о том, что токен был подделан.  $tamperedToken = $_POST["apiKey"]; list($header, $payload, $signature) = $tamperedToken; // Determine the signature this token *should* have // when the server's secret is used as the key $expectedSignature = hash_hmac("sha256", "$header.$payload", $secret, true); // The token has been tampered with because its // signature is incorrect for the data it includes if ($signature !== $expectedSignature) {    http_response_code(403); } // The signatures match - we generated this // token and can safely trust its data else {    $user = fetchUserById($payload["userId"]); } Злоумышленник не может создать действительный токен, если он не знает секретный ключ, который хранится на сервере. Также это означает, что случайная утеря или преднамеренная передача секретного ключа сразу же делает все ранее созданные токены недействительными.  В реальной ситуации ваш код аутентификации должен проверять срок действия токена, а также должен убедиться, что он уже является действительным ( nbf в полезной нагрузке). Это все необходимо для того, чтобы определить, является ли сеанс пользователя действительным. Когда нужно использовать JWT JWT, как правило используют для аутентификации API, поскольку их достаточно просто реализовать на сервере, легко использовать на клиентской стороне и просто передавать через границы сети. Но несмотря на то, что они такие простые, они обеспечивают хороший уровень безопасности за счет того, что каждый токен подписывается с помощью секретного ключа, который хранится на сервере.  JWT – это механизм, который не фиксирует текущее состояние, поэтому нет необходимости фиксировать информацию о созданных токенах на вашем сервере. Информацию о клиенте, который предоставляет вам JWT, вы можете получить из полезной нагрузки, а не искать ее в базе данных. После того, как подпись будет проверена, эта информация будет считаться достоверной.  Если вам необходимо обмениваться информацией между двумя сторонами без какого-либо постороннего вмешательства, то использование JWT – это отличный вариант. Однако у этого механизма есть слабые места, о которых следует знать заранее. В случае, если произойдет утечка секретного ключа или если ваш код проверки подписи содержит ошибку, то будет скомпрометирована вся система. Именно поэтому для реализации процесса создания и проверки JWT многие разработчики используют библиотеку с открытым исходным кодом. Функции доступны для всех популярных языков программирования, и они исключают риск ошибок при проверке токена.   Заключение Стандарт JWT – это формат обмена данными, который включает в себя проверку целостности. Как правило, JWT используют для защиты взаимодействия между серверами API и клиентскими приложениями. Сервер может доверять входящим токенам, если у него получается воспроизвести их подписи. С помощью информации, полученной из полезной нагрузки, можно обеспечить безопасность при выполнении каких-либо действий  JWT достаточно удобны, но при этом имеют некоторые недостатки. Текстовое представление JWT в кодировке Base-64 может быть слишком объемным, если в полезной нагрузке будет слишком много полей. Это будет недопустимым потреблением ресурсов, если ваш клиент собирается отправлять JWT с каждым запросом.  Еще одним возможным недостатком может оказаться то, что JWT не фиксирует текущее состояние. После того, как токен был создан, он является неизменяемым и должен использоваться как есть до истечения своего срока действия. Клиенты, которые используют полезные данные JWT для определения прав доступа пользователя или для использования лицензированных функций, должны будут получать новый токен с сервера каждый раз, когда что-то из этого меняется. 
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59