По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет, сегодня расскажем что такое база данных и SQL. У современных баз данных куча нюансов - погнали разбираться. Представь - собираешь ты деньги на подарок корешу, и записываешь на бумажке, кто сколько скинул. Табличка с денежками организована, разделена по именам и сумме долга, и имеет удобную структуру - ну вот оно, это и есть база данных! Ага, теперь, перемещаемся в цифровое пространство и заводим целый эксель файл для этого дела. Стало удобнее, можно редактировать, сортировать и даже данные удалять! Круто! Но достаточно ли этого для роста этой базы данных? Нет. Со временем данных становится так много, что админам приходится связывать их друг с другом, а тут одним эксель файлом уже не обойтись. Представим, решили вы сделать свой аналог ютуба, как будете хранить инфу о пользователях? Список юзеров, там, каналы, кто на что подписан, лайки и вот это все. Сложить это все в одну таблицу? Будет неудобно и медленно работать. Очевидно, надо разделить сущности на несколько таблиц - юзеры, каналы и видосы: Теперь свяжем данные между собой и добавим информацию о том, кто создал канал, и на каком канале залили видео. Ага, получились связанные таблицы. Связанные, от слова связь. А связь, это по-английски relation. А в айти тусовке они так и называются - реляционные базы данных, и это один самых распространенных типов баз данных. Еще есть нереляционные базы данных, о них подробнее можно прочитать в этой статье про NoSQL. Уф, ну теперь с данными стало гораздо удобнее работать, и мы избежали большой таблицы с повторяющимися строчками, разбив все на несколько табличек. Такой процесс еще называется нормализацией, когда мы избавляемся от избыточных данных. Ну и как раз для этого мы ввели в каждой таблице специальное поле - ID, которое идентифицирует каждую запись. Этот айди называется Primary Key, он же “первичный ключ”. А в таблице которая будет на него ссылаться, он будет называться Foreign Key, или по-русски “внешний ключ”. Нырнем в детали и поговорим про типы связей между таблицами. Первый тип называется “Один-ко-многим” или “многие-к-одному” (One-to-Many или Many-to-One). В нашем примере, у каждого видео может быть только один канал, где оно выложено, но на одном канале может быть много видео, поэтому в двух последних строках ID канала у нас повторяется, верно? Отношения «один-ко-многим» также можно рассматривать как отношения «многие-к-одному», в зависимости от того, с какой стороны вы на это смотрите. Второй тип связей называется “один-к-одному” (One-to-One) - классические табличные отношения. Вообще, это редко используемый тип связи, обычно его делают для безопасности. Это как если на нашем аналоге ютуба, мы разрешили бы создавать только один канал одному пользователю и в таблице с каналами ID создателя не могло повторяться. Такое себе, согласен? В таком случае вообще можно было бы обойтись и одной таблицей. Ну и третий тип связей, это “многие ко многим” (Many-to-many). Это когда у нас появляется промежуточная таблица связей, которая как бы соединяет два отношения “один ко многим”, которые мы обсудили в начале разбора типов связей. Давайте сделаем таблицу с лайками балалайками, где будем хранить ID пользователей и ID видео, к которым они поставили лайк: А вот так они связан: каждый пользователь может поставить лайк каждому видео. Теперь вопрос - а где все это хранить? Не в экселе же. И тут на сцену выходит термин СУБД, она же система управления базами данных - это программа, которая позволяет создавать, редактировать и администрировать реляционную базу. Ну и для управления всей этой петрушкой используется язык структурированных запросов, SQL (Structured Query Language) эскюэль или сиквел, как иногда его называют за рубежом. Он очень простой и понятный, вот смотри - чтобы найти названия всех видео с одного канала, нам нужно выполнить следующий запрос: SELECT name FROM videos WHERE channel_id = 201 То есть мы буквально говорим: выбери (SELECT) имена из (FROM) таблицы видео, где (WHERE) айдишник (ID) канала равен 201. Если вы хотите взять данные из нескольких таблиц и объединить результат, то нужно использовать в запрос параметр JOIN (от английского соединить). Вот такая упрощающая жизнь админам аналогия с разговорным языком. Так, SQL конечно позволяет добавлять, удалять и изменять данные и сами таблицы. Но важно не забывать про схему базы данных (Database schema), которая служит для описания структуры таблицы, ее полей и ограничений. Прикол в том, что если вам потребуется добавить или убрать столбец в таблице, то это изменение коснется вообще всех данных в таблице, таким образом если мы добавляем новый столбец, то он теперь будет присутствовать в каждой строке. Окей, а для чего вообще нужны ограничения? Для целостности твоих данных. Помнишь мы рассказали про первичный и внешний ключ? Так вот, благодаря им мы можем удостовериться, что в таблицу не попадет запись, которая ссылается на несуществующий айдишник. Или различные ограничения полей, которые не дадут записать дублирующие или пустые данные в нашу базу (Not NULL и Unique). И еще: транзакции. Эта штука, которая позволяет как бы склеить несколько SQL запросов в один. Ну вот представь такую задачку: вставить данные в первую таблицу, а во второй указать ID вставленной записи. Если ты делаешь это без использования транзакций, а во время второго этапа у тебя отвалится интернет, то первая запись попадет в базу, а вторая нет. Ага, появляется интернет, и ты с улыбкой на лице идешь снова выполнить эти запросы, только на этот раз получишь ошибку, что такая запись уже есть, ибо первая то уже в базе! А в случае использования транзакций, при получении ошибки, мы откатимся до того момента, который был до начала транзакции. А еще все эти радости помогают реляционным БД (базам данных) соответствовать так называемым требованиям ACID, которые нужны для сохранности данных - это очень важно в банковской отрасли, или любой другой, где целостность и сохранность данных супер важны. Давай разберемся с аббревиатурой: Atomicity — атомарность, или же проще говоря, непрерывность: это как раз про транзакции, которые мы обсудили только что. Либо операция выполняется целиком, либо никак. Consistency — согласованность: данные, записываемые в таблицу должны соответствовать всем выставленным правилам и ограничениям, помнишь, мы говорили про первичный и внешний ключи, а также про уникальность? Isolation — изолированность: если вы гоняете тонну транзакций одновременно, они не должны пересекаться и влиять друг на друга. Это очень важно для высоконагруженных баз Durability — надежность: если мы получили подтверждение, что транзакция выполнена, то значит наши данные в сохранности, даже если после этого произошел сбой. Ну и в качестве примеров таких баз данных назовем: Microsoft SQL Server, Oracle Database, MySQL, MariaDB и PostgreSQL.
img
Рассказываем как быстро и просто поднять свой NFS сервер на Ubuntu Linux Server 14-04.1, а также разберёмся с принципами работы протокола NFS и рассмотрим теорию. Теория Аббревиатура NFS расшифровывается как Need for Speed - Network File System. Это протокол для доступа к распределённым сетевым файловым системам, с помощью которого можно подмонтировать удалённые директории к своему серверу. Это позволяет использовать дисковое пространство другого сервера для хранения файлов и регулярно производить запись данных на него с нескольких серверов. Протокол имеет клиент-серверную модель, то есть один сервер (ещё его называют “шара” от слова share), с установленным пакетом NFS, будет обеспечивать доступ к своим каталогам и файлам, а клиентские компьютеры будут подключаться к нему по сети. Закрепим прочитанное схемкой: Обращения к серверу NFS осуществляются в виде пакетов протокола RPC (Remote Call Procedure), который позволяет выполнить различные функции или процедуры в другом сетевом пространстве, то есть на удалённом сервере. Авторизация пользователей, которые подключаются к серверу осуществляется по IP-адресу, а также по специальным идентификаторам пользователя UID и группы GID. Это не лучший способ относительно безопасности хранимых файлов, в сравнении с классической моделью «логин/пароль». Зато, благодаря такой архитектуре и тому, что NFS использовал протокол UDP без установления сессии, он практически невосприимчив к сбоям сети и самих клиентских компьютеров. Так, при каком-либо сбое, передача файла просто приостановится, а когда связь будет налажена, то передача возобновиться без необходимости какой-либо перенастройки. Настройка Думаю, с теорией понятно, так что давайте переходить к практике. Как было сказано, все настройки будет проводить на Ubuntu 14.04.1 Прежде всего, на компьютер, который будет выступать в роли сервера NFS, нужно установить необходимые компоненты. Итак, скачиваем пакет nfs-kernel-server, с помощью которого мы сможем раздать доступ (“расшарить”) директории. Для этого на будущем NFS сервере вводим команды: sudo apt-get update sudo apt-get install nfs-kernel-server Теперь создаём собственно директорию к которой хотим раздать доступ. Стоит отметить, что можно также “расшарить” уже имеющиеся на сервере директории, но мы создадим новую: sudo mkdir /var/nfs Далее мы должны сделать так, чтобы владельцем директории /var/nfs и группе, к которой он принадлежит стали все пользователи в нашей системе. Для этого вводим на сервере команду: sudo chown nobody:nogroup /var/nfs Вводите эту команду только для тех директорий, которые создали сами, не надо вводить её для уже имеющихся директорий, например /home . Следующим шагом необходимо изменить конфигурацию самого NFS, она лежит в файле /etc/exports, открываем его для редактирования любимым редактором: sudo nano /etc/exports Перед вами откроется конфигурационный файл с закомментированными строками, которые содержат примеры настройки для разных версий NFS. Закомментированные – это те, в начале которых стоит символ #, и это значит, что параметры, указанные в них, не имеют силы. Нам необходимо внести в этот файл следующие не закомментированные строки: /var/nfs 10.10.0.10/24(rw,sync,no_subtree_check) Где: /var/nfs - Директория, которую мы хотим расшарить 10.10.0.10 - IP-адрес и маска клиентского компьютера, которому нужно раздать доступ к директории rw - Разрешает клиенту читать (r) и записывать (w) файлы в директории sync - Этот параметр заставляет NFS записывать изменения на диск перед ответом клиенту. no_subtree_check - Данная опция отключает проверку того, что пользователь обращается именно к файлу в определённом подкаталоге. Если это проверка включена, то могут возникнуть проблемы, когда, например, название файла или подкаталога было изменено и пользователь попробует к ним обратиться. После этого, нужно создать таблицу соответствия расшаренных директорий и клиентов, а затем запустить NFS сервис. Для этого вводим следующие команды: sudo exportfs –a sudo service nfs-kernel-server start После выполненных действий расшаренные директории должны стать доступными для доступа с клиентов.
img
Очень важно знать номера портов, используемых устройствами, с которыми мы работаем. Мы уже рассказывали про то, какие порты используются в Asterisk, a сегодня мы расскажем какие порты использует АТС и ее компоненты от компании Cisco. Если вам известны номера портов, устранение неполадок становится немного проще. Номера портов используются для определения того, на какой протокол должен быть направлен входящий трафик. Порты назначаются при установлении сеанса и освобождаются по окончании сеанса. Список портов Cisco Unified Communications Manager, Voice Gateway и Gatekeeper Итак, давайте посмотрим, какие основные порты используются между голосовыми устройствами, такими как Cisco Unified Communications Manager, Voice Gateway и Gatekeeper SIP сообщенияTCP/UDP 5060SIP сообщенияTLS(TCP) 5061Real-Time Protocol (RTP)UDP 16384 – 32767Secure Real-Time Protocol (SRTP)UDP 16384 – 32767Skinny Client Protocol (SCCP)TCP 2000Secure Skinny Client Protocol (SCCPS)TCP 2443Media Gateway Control Protocol (MGCP) управление шлюзомUDP 2427Media Gateway Control Protocol (MGCP) соединение со шлюзамTCP 2428MGCP GatewayUDP 2427, 2428 H.225 Signalling Services ICT и H323 GatekeeperTCP 1720Gatekeeper (H.225) DiscoveryTCP 1718Gatekeeper (H.225) RASUDP 1719H.245TCP 5555-5574Gatekeeper Discovery (RAS)UDP 1719Q.931 signaling от Voice GatewayTCP 2727Q.931 call SetupTCP 1720SyslogTCP 514
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59