По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Интерфейс администрирования FreePBX создан для удовлетворения как простых, так и сложных конфигурационных требований и обладает действительно богатым функционалом. С одной стороны, администратор может в графической среде произвести настройки, а с другой стороны, сделать это через конфигурационные файлы с помощью интерфейса командной строки (CLI). При решении нетривиальных задач, которые невозможно выполнить с помощью FreePBX, опытные администраторы IP – АТС Asterisk создают собственные диал – планы с помощью консоли в файле конфигурации /etc/asterisk/extensions_custom.conf. Но, к сожалению, после создания подобных диал - планов, FreePBX не будет знать о их существовании. Со временем, это чревато пересечением конфигураций (например, появление дублей внутренних номеров). В этой ситуации на выручку приходит модуль Custom Extension, о котором и поговорим Настройка модуля Итак, давайте от теории к практике. Представим, вы создали собственный диал – план следующего содержания: [play-audiofile] exten => 777,1,Playback(tt-audiofile) Здесь, при наборе номер 777, первым приоритетом мы проигрываем аудио – файл tt-audiofile. Сохраняем изменения и даем команду asterisk -rx "dialplan reload" Спустя некоторое время, мы создаем внутренний номер 777 в FreePBX. Что будет в таком случае? Верно, будет пересечение конфигураций. Asterisk не будет знать что делать. Чтобы этого не было, открываем вкладку Admin -> Custom Extension и нажимаем кнопку + Add Extension: Заполняем поля в открывшейся форме. Условно говоря, мы сообщаем FreePBX, что номер 777 зарезервирован, и его нельзя более использовать: Custom Extension - введите номер, который используется в вашем диал – плане для дальнейшего исключения его из настроек FreePBX. В нашем примере это 777. Description - тезисное описание для создаваемого правила. Notes - опишите здесь подробно, по какой причине вы исключаете данный номер. Это поможет вам в будущем быстрее ориентироваться в создаваемых правилах. Готово. По окончанию настроек нажмите Submit и затем Apply Config.
img
Потренируйтесь в ответах на популярные вопросы по SQL на собеседованиях. В данной статье приведен список типовых вопросов по SQL, с которыми можно столкнуться на настоящем собеседовании, и даны ответы. Чтобы получить максимум из прочитанного, постарайтесь сначала отвечать на вопросы самостоятельно. Удачи! 1. Что такое SQL? SQL расшифровывается как Structured Query Language – язык структурированных запросов. Это язык программирования для взаимодействия с данными, которые хранятся в системе управления реляционными базами данных. Синтаксис SQL схож с английским языком, поэтому его легко читать, писать и интерпретировать. Он позволяет вам писать запросы, определяющие подмножество данных, которые вы ищите. Эти запросы можно сохранять, уточнять, обмениваться ими и запускать в различных базах данных. 2. Что такое база данных? База данных (БД) – это набор данных, хранимых на компьютере. При этом сами данные структурированы таким образом, что их можно было легко получить. 3. Что такое реляционная база данных? Реляционная база данных – это разновидность базы данных. В ней используется структура, которая позволяет нам идентифицировать и обращаться к данным в привязке к другим частям данных из БД. Данные в реляционной БД часто организованы в виде таблиц. 4. Что такое РСУБД? Система управления реляционными базами данных (РСУБД) – это программа, позволяющая вам создавать, обновлять и администрировать реляционную базу данных. Для доступа к базам данных большинство РСУБД использует язык SQL. Самой популярной РСУБД считается MySQL. К другим системам относятся PostgreSQL, Oracle DB, SQL Server и SQLite. 5. Что такое таблица? Таблица – это набор данных, распределенных по строкам и столбцам. Иногда их называют «связями». В таблицах могут быть сотни, тысячи и иногда даже миллионы строк данных. 6. Что такое строка и столбец в таблице? Строка – это одна запись данных в таблице. Столбец – это набор значений данных определенного типа. 7. Что такое тип данных? Тип данных – это атрибут, который определяет тип данных в столбце. В каждом столбце БД есть тип данных. Несколько часто используемых типов данных: INTEGER, TEXT, DATE, REAL. 8. Что такое первичный и внешний ключ? Первичный ключ (primary key) – это столбец, который однозначно определяет каждую строку в таблице. Первичные ключи должны соответствовать следующим требованиям: ни одно значение не может быть пустым (NULL), каждое значение должно быть уникальным и в таблице не может быть более одного столбца с первичным ключом. Например, в таблице customers первичным ключом будет customer_id. Внешний ключ (foreign key) – это первичный ключ для одной таблицы, который присутствует и в другой таблице. Например, есть дополнительная таблица orders. В каждом заказе может храниться информация о клиенте. Поэтому внешним ключом будет столбец customer_id. 9. В чем отличие ALTER от UPDATE? Оператор ALTER используется для добавления нового столбца в таблицу. Он изменяет структуру таблицы. Оператор UPDATE используется для редактирования строки в таблице. Он изменяет существующие записи в таблице. 10. Что такое запрос? Запрос (query) – это оператор SQL для получения информации, хранимой в базе данных. Запросы позволяют нам «общаться» с базой данных, задавая вопросы и возвращая результирующий набор подходящих данных. 11. Что такое подзапрос? Подзапрос (subquery) – это внутренний запрос, вложенный во внешний. Запросы можно вложить через операторы SELECT, INSERT, UPDATE или DELETE. Если есть подзапрос, то он будет выполняться до запуска внешнего оператора. 12. Что такое ограничения? Ограничения (constraints) – это набор правил, через которых базе данных сообщается об ограничении типа данных, хранимых в столбцах. Они предписывают базе данных отклонять введенные данные, если они не соответствуют ограничению. Ограничения добавляют информацию о том, как может использоваться столбец, и вызываются после типа данных для столбца. Несколько примеров ограничений: PRIMARY KEY: однозначно определяет каждую строку и требует уникальности каждого значения. UNIQUE: каждое значение в столбце должно отличаться. NOT NULL: в столбцах обязательно должны быть значения. DEFAULT: дополнительный аргумент, который подставляется в качестве предполагаемого значения для каждой новой строки, если в ней не указано значение для этого столбца. 13. Что такое оператор? Оператор (statement) – это текст, который база данных распознает как допустимую команду. Операторами можно пользоваться для выполнения таких задач, как изменение структуры таблицы, обновление данных или извлечение данных из БД. Структура операторов может варьировать, но каждый из них должен заканчиваться точкой с запятой (;). Количество строк в операторе неважно. Оператор можно записать в одну строку или разделить на несколько (для лучшей читабельности). 14. Как вы проверите, есть ли в поле значение или нет? Если в поле отсутствует значение, оно обозначается как NULL. Чтобы проверить поля на пустые значения, можно прописать в качестве условия IS NULL: WHERE [столбец] IS NULL. Чтобы найти поля со значением, добавьте в условие IS NOT NULL: WHERE [столбец] IS NOT NULL. 15. Чем отличаются DISTINCT и UNIQUE? DISTINCT – это ключевое слово, которым мы пользуемся, если хотим вернуть уникальные значения на выводе. Оно отсеивает все повторяющиеся значения в конкретном столбце. UNIQUE – это ограничение, которым пользуются, чтобы все значения столбца отличались. Оно похоже на PRIMARY KEY, с той лишь разницей, что в таблице может быть множество разных столбцов с UNIQUE. 16. Для чего используются агрегатные функции? Агрегатные функции используются для выполнения вычислений на одном или нескольких значениях и возвращают одиночное значение с осмысленной информацией. Несколько примеров агрегатных функций: COUNT(), SUM(), MAX(), MIN(), AVG() и ROUND(). 17. Что такое соединение (JOIN)? JOIN – это способ объединения строк из двух и более таблиц посредством общего столбца. 18. В чем отличие INNER JOIN от LEFT JOIN? INNER JOIN используется для объединения строк из двух таблиц, которые соответствуют условию ON. В конечный результат не попадают строки, не соответствующие условию ON. LEFT JOIN сохраняет все строки из первой таблицы, вне зависимости от того, есть ли для них совпадающая по условию ON строка во второй таблице. 19. Для чего нужны оконные функции? Оконные функции (windows functions) нужны в случаях, когда вы хотите сохранить значения своей исходной таблицы и параллельно отобразить сгруппированную или суммарную информацию. Они похожи на агрегатные функции, но не сокращают количество строк в результате, а объединяют и группируют их в несколько результатов. 20. Что такое индексы и для чего они нужны? Индексы – это мощный инструмент, который используется в фоновом режиме БД для ускорения запросов и выступает в роли справочной таблицы для данных. Они нужны для эффективного хранения данных и быстрого их получения, что может быть критически важным для успеха крупных технологических компаний, которые обрабатывают петабайты данных каждый день.
img
Несмотря на доступ к все более эффективному и мощному оборудованию, операции, выполняемые непосредственно на традиционных физических (или «чистых») серверах, неизбежно сталкиваются со значительными практическими ограничениями. Стоимость и сложность создания и запуска одного физического сервера говорят о том, что эффективное добавление и удаление ресурсов для быстрого удовлетворения меняющихся потребностей затруднено, а в некоторых случаях просто невозможно. Безопасное тестирование новых конфигураций или полных приложений перед их выпуском также может быть сложным, дорогостоящим и длительным процессом. Исследователи-первопроходцы Джеральд Дж. Попек и Роберт П. Голдберг в статье 1974 года («Формальные требования к виртуализируемым архитектурам третьего поколения» (“Formal Requirements for Virtualizable Third Generation Architectures”) - Communications of the ACM 17 (7): 412–421) предполагали, что успешная виртуализация должна обеспечивать такую среду, которая: Эквивалента физическому компьютеру, поэтому доступ программного обеспечения к аппаратным ресурсам и драйверам должен быть неотличим от невиртуализированного варианта. Обеспечивает полный контроль клиента над аппаратным обеспечением виртуализированной системы. По возможности эффективно выполняет операции непосредственно на базовых аппаратных ресурсах, включая ЦП. Виртуализация позволяет разделить физические ресурсы вычислений, памяти, сети и хранилища («основополагающая четверка») между несколькими объектами. Каждое виртуальное устройство представлено в своем программном обеспечении и пользовательской среде как реальный автономный объект. Грамотно настроенные виртуальные изолированные ресурсы могут обеспечить более защиту приложений приложений без видимой связи между средами. Виртуализация также позволяет создавать и запускать новые виртуальные машины почти мгновенно, а затем удалять их, когда они перестанут быть необходимыми. Для больших приложений, поддерживающих постоянно меняющиеся бизнес-требования, возможность быстрого вертикального масштабирования с повышением или понижением производительности может означать разницу между успехом и неудачей. Адаптивность, которую предлагает виртуализация, позволяет скриптам добавлять или удалять виртуальные машины за считанные секунды, а не недели, которые могут потребоваться для покупки, подготовки и развертывания физического сервера. Как работает виртуализация? В невиртуальных условиях, архитектуры х86 строго контролируют, какие процессы могут работать в каждом из четырех тщательно определенных уровней привилегий (начиная с Кольца 0 (Ring 0) по Кольцо 3). Как правило, только ядро операционной системы хоста имеет какой-либо шанс получить доступ к инструкциям, хранящимся в кольце под номером 0. Однако, поскольку вы не можете предоставить нескольким виртуальным машинам, которые работают на одном физическом компьютере, равный доступ к кольцу 0, не вызывая больших проблем, необходим диспетчер виртуальных машин (или «гипервизор»), который бы эффективно перенаправлял запросы на такие ресурсы, как память и хранилище, на виртуализированные системы, эквивалентные им. При работе в аппаратной среде без виртуализации SVM или VT-x все это выполняется с помощью процесса, известного как ловушка, эмуляция и двоичная трансляция. На виртуализированном оборудовании такие запросы, как правило, перехватываются гипервизором, адаптируются к виртуальной среде и возвращаются в виртуальную машину. Простое добавление нового программного уровня для обеспечения такого уровня организации взаимодействия приведет к значительной задержке практически во всех аспектах производительности системы. Одним из успешных решений было решение ввести новый набор инструкций в ЦП, которые создают, так называемое, «кольцо 1», которое действует как кольцо 0 и позволяет гостевой ОС работать без какого-либо влияния на другие несвязанные операции. На самом деле, при правильной реализации виртуализация позволяет большинству программных кодов работать как обычно, без каких-либо перехватов. Несмотря на то, что эмуляция часто играет роль поддержки при развертывании виртуализации, она все же работает несколько иначе. В то время как виртуализация стремится разделить существующие аппаратные ресурсы между несколькими пользователями, эмуляция ставит перед собой цель заставить одну конкретную аппаратную/программную среду имитировать ту, которой на самом деле не существует, чтобы у пользователей была возможность запускать процессы, которые изначально было невозможно запустить. Для этого требуется программный код, который имитирует желаемую исходную аппаратную среду, чтобы обмануть ваше программное обеспечение, заставив его думать, что оно на самом деле работает где-то еще. Эмуляция может быть относительно простой в реализации, но она почти всегда несет за собой значительные потери производительности. Согласно сложившимся представлениям, существует два класса гипервизоров: Type-1 и Type-2. Bare-metal гипервизоры (исполняемые на «голом железе») (Type-1), загружаются как операционная система машины и – иногда через основную привилегированную виртуальную машину – сохраняют полный контроль над аппаратным обеспечением хоста, запуская каждую гостевую ОС как системный процесс. XenServer и VMWare ESXi – яркие примеры современных гипервизоров Type-1. В последнее время использование термина «гипервизор» распространилось на все технологии виртуализации хостов, хотя раньше оно использовалось только для описания систем Type-1. Первоначально более общим термином, охватывающим все типы систем, был «Мониторы виртуальных машин». То, в какой степени люди используют термин «мониторы виртуальных машин» все это время, наводит меня на мысль, что они подразумевают «гипервизор» во всех его интерпретациях. Гипервизоры, размещенные на виртуальном узле (Type-2) сами по себе являются просто процессами, работающими поверх обычного стека операционной системы. Гипервизоры Type-2 (включая VirtualBox и, в некотором роде, KVM) отделяют системные ресурсы хоста для гостевых операционных систем, создавая иллюзию частной аппаратной среды. Виртуализация: паравиртуализация или аппаратная виртуализация Виртуальные машины полностью виртуализированы. Иными словами, они думают, что они обычные развертывания операционной системы, которые живут собственной счастливой жизнью на собственном оборудовании. Поскольку им не нужно взаимодействовать со своей средой как-то иначе, чем с автономной ОС, то они могут работать с готовыми немодифицированными программными стеками. Однако раньше за такое сходство приходилось платить, потому что преобразование аппаратных сигналов через уровень эмуляции занимало дополнительное время и циклы. В случае с паравиртуализацией (PV – Paravirtualization) паравиртуальные гости хотя бы частично осведомлены о своей виртуальной среде, в том числе и том, что они используют аппаратные ресурсы совместно с другими виртуальными машинами. Эта осведомленность означает, что хостам PV не нужно эмулировать хранилище и сетевое оборудование, и делает доступными эффективные драйверы ввода-вывода. На первых порах это позволяло гипервизорам PV достигать более высокой производительности для операций, требующих подключения к аппаратным компонентам. Тем не менее, для того, чтобы предоставить гостевой доступ к виртуальному кольцу 0 (т.е. кольцу -1), современные аппаратные платформы – и, в частности, архитектура Intel Ivy Bridge – представили новую библиотеку наборов инструкций ЦП, которая позволила аппаратной виртуализации (HVM – Hardware Virtual Machine) обойти узкое место, связанное с ловушкой и эмуляцией, и в полной мере воспользоваться преимуществами аппаратных расширений и немодифицированных операций ядра программного обеспечения. Также значительно повысить производительность виртуализации может последняя технология Intel – таблицы расширенных страниц (EPT – Extended Page Tables). В связи с этим, в большинстве случаев можно обнаружить, что HVM обеспечивает более высокую производительность, переносимость и совместимость. Аппаратная совместимость Как минимум, несколько функций виртуализации требуют аппаратную поддержку, особенно со стороны ЦП хоста. Именно поэтому вы должны убедиться, что на вашем сервере есть все, что вам необходимо для задачи, которую вы собираетесь ему дать. Большая часть того, что вам нужно знать, храниться в файле /proc/cpuinfo и, в частности, в разделе «flags» (флаги) каждого процессора. Однако вам нужно знать, то искать, потому что флагов будет очень много. Запустите эту команду, чтобы посмотреть, что у вас под капотом: $ grep flags /proc/cpuinfo Контейнерная виртуализация Как мы уже видели ранее, виртуальная машина гипервизора – это полноценная операционная система, чья связь с аппаратными ресурсами «основополагающей четверки» полностью виртуализирована – она думает, что работает на собственном компьютере. Гипервизор устанавливает виртуальную машину из того же ISO-образа, который вы загружаете и используете для установки операционной системы непосредственно на пустой физический жесткий диск. Контейнер в свою очередь фактически представляет собой приложение, запускаемое из скриптообразного шаблона, которое считает себя операционной системой. В контейнерных технологиях, таких как LXC и Docker, контейнеры – это не что иное, как программные и ресурсные (файлы, процессы, пользователи) средства, которые зависят от ядра хоста и представления аппаратных ресурсов «основополагающей четверки» (т.е. ЦП, ОЗУ, сеть и хранилище) для всего, то они делают. Конечно, с учетом того, что контейнеры фактически являются изолированными расширениями ядра хоста, виртуализация Windows (или более старых или новых версий Linux с несовместимыми версиями libc), например, на хосте Ubuntu 16.04 будет сложна или невозможна. Но эта технология обеспечивает невероятно простые и универсальные вычислительные возможности. Перемещение Модель виртуализации также позволяет использовать широкий спектр операций перемещения, копирования и клонирования даже из действующих систем (V2V). Поскольку программные ресурсы, определяющие виртуальную машину и управляющие ею, очень легко идентифицировать, то обычно не требуется очень много усилий для дублирования целых серверных сред в нескольких местах и для разных целей. Иногда это не сложнее, чем создать архив виртуальной файловой системы на одном хосте, распаковать его на другом хосте по тому же пути, проверить основные сетевые настройки и запустить. Большинство платформ предлагают единую операцию командной строки для перемещения гостей между хостами. Перемещение развертываний с физических серверов на виртуализированные среды (P2V) иногда может оказаться немного сложнее. Даже создание клонированного образа простого физического сервера и его импорт в пустую виртуальную машину может сопровождаться определенными трудностями. И как только все это будет выполнено, вам, возможно, придется внести некоторые корректировки в системную архитектуру, чтобы можно было использовать возможности, предлагаемые виртуализацией, в полную силу. В зависимости от операционной системы, которую вы перемещаете, вам также может потребоваться использование паравиртуализированных драйверов для того, чтобы ОС могла корректно работать в своем «новом доме». Как и в любых других ситуациях управления сервером: тщательно все продумывайте заранее.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59