По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сегментная маршрутизация (Segment Routing, SR) может или не может считаться туннельным решением, в зависимости от конкретной реализации и того, насколько строго вы хотите придерживаться определения туннелей, представленного ранее в статье "Виртуализация сетей". В этой статье будет рассмотрена основная концепция сегментной маршрутизации и две возможные схемы реализации: одна с использованием меток потока IPv6, а другая с использованием меток многопротокольной коммутации по меткам (Multiprotocol Label Switching -MPLS). Каждому устройству в сети с поддержкой SR присваивается уникальная метка. Стек меток, описывающий путь в терминах этих уникальных меток, может быть присоединен к любому пакету, заставляя его принимать определенный указанный путь. Рисунок 5 демонстрирует это. Каждый маршрутизатор на рисунке 5 объявляет IP-адрес в качестве идентификатора вместе с меткой, прикрепленной к этому IP-адресу. В SR метка, прикрепленная к идентификатору маршрутизатора, называется идентификатором сегмента узла (SID узла). Поскольку каждому маршрутизатору в сети присваивается уникальная метка, путь через сеть может быть описан с использованием только этих меток. Например: Если вы хотите перенаправить трафик от A к K по пути [B, E, F, H], вы можете описать этот путь с помощью меток [101,104,105,107]. Если вы хотите перенаправить трафик от A к K по пути [B, D, G, H], вы можете описать этот путь с помощью меток [101,103,106,107]. Набор меток, используемых для описания пути, называется стеком меток. Между D и H есть две связи; как это можно описать? В SR доступно несколько опций, в том числе: Стек меток может включать в себя только идентификаторы SID узла, описывающие путь через сеть в терминах маршрутизаторов, как показано ранее. В этом случае, если бы стек меток включал пару [103,107], D просто перенаправлял бы H в обычном режиме на основе информации локальной маршрутизации, поэтому он будет использовать любой локальный процесс, который он будет использовать для пересылки любого другого пакета, например, распределение нагрузки между двумя каналами для пересылки трафика с меткой SR. Стек меток может включать явную метку для загрузки общего ресурса по любому доступному набору путей, доступных в этой точке сети. H может назначить метку для каждого входящего интерфейса, а также SID узла, привязанный к его локальному идентификатору маршрутизатора. Эти метки будут объявляться так же, как SID узла, но, поскольку они описывают смежность, они называются SID смежности (adjacency). SID смежности уникален локально; он уникален для маршрутизатора, объявляющего сам SID смежности. Третий вид SID, префиксный SID, описывает конкретный достижимый пункт назначения (префикс) в сети. SID узла может быть реализован как SID префикса, привязанный к loopback адресу на каждом маршрутизаторе в сети. Не обязательно, чтобы весь путь описывался стеком меток. Например, стек меток [101,103] будет направлять трафик в B, затем в D, но затем позволит D использовать любой доступный путь для достижения IP-адреса назначения в K. Стек меток [105] обеспечит прохождение трафика через сеть к K будет проходить через F. Не имеет значения, как трафик достиг этой точки в сети и как он был перенаправлен после того, как достигнет F, если он проходит через F, будучи направленным к K. Каждая метка в стеке представляет собой сегмент. Пакеты переносятся от метки к метке через каждый сегмент в сети, чтобы быть транспортированными от головной части пути к хвостовой части пути. Маршрутизация сегментов с многопротокольной коммутацией меток MPLS был изобретен как способ сочетать преимущества асинхронного режима передачи (ATM), который больше не используется широко, с IP-коммутацией. В первые дни сетевой инженерии наборы микросхем, используемые для коммутации пакетов, были более ограничены в своих возможностях, чем сейчас. Многие из используемых наборов микросхем были Field Programmable Gate Arrays (FPGA), а не Application-Specific Integrated Circuits (ASIC), поэтому длина поля, в котором коммутировался пакет, напрямую коррелировала со скоростью, с которой пакет мог коммутироваться. Часто было проще переработать пакет или обработать его дважды, чем включать в заголовок много сложной информации, чтобы пакет можно было обработать один раз. Примечание: повторное использование пакетов по-прежнему часто используется во многих наборах микросхем для поддержки внутренних и внешних заголовков или даже для обработки различных частей более длинного и сложного заголовка пакета. MPLS инкапсулирует исходный пакет в заголовок MPLS, который затем используется для коммутации пакета по сети. На рисунке 6 показан заголовок MPLS. Весь заголовок состоит из 32 бит, метка 20 бит. Устройство пересылки MPLS может выполнять три операции: Текущая метка в заголовке MPLS может быть заменена другой меткой (SWAP). В пакет можно вставить новую метку (PUSH). Текущая метка может быть очищена, а метка под текущей меткой обработана (POP). Операции PUSH и POP переносятся непосредственно в SR: операция SWAP реализована в SR как CONTINUE, что означает, что текущая метка заменяется той же меткой (т. е. заголовок с меткой 100 будет заменен меткой 100), и обработка этого текущего сегмента будет продолжена. Проще всего понять процесс обработки на примере. Рисунок 7 демонстрирует это. На рисунке 7 каждому маршрутизатору присвоена глобально уникальная метка из глобального блока сегментной маршрутизации (Segment Routing Global Block -SRGB). Они объявляются через протокол маршрутизации или другую плоскость управления. Когда A получает пакет, предназначенный для N, он выбирает путь через сеть, используя некоторый локальный механизм. В этот момент: Чтобы начать процесс, A выполнит PUSH серии заголовков MPLS на пакете, которые описывают путь через сеть, [101,103,104,202,105,106,109, 110]. Когда A коммутирует пакет в сторону B, он вставит первую метку в стек, так как нет необходимости отправлять свою собственную метку в заголовке. Стек меток на канале [A,B] будет равен [103,104,202,105,106,109,110]. Когда B получает пакет, он проверяет следующую метку в стеке. Обнаружив, что метка равна 103, он выполнит POP этой метки и перешлет пакет в D. В этом случае стек меток SR выбрал один из двух возможных путей с равной стоимостью через сеть, так что это пример выбора SR конкретного пути. Стек меток на канале [B, D] будет [104,202,105,106,109,110]. Когда D получает пакет, верхняя метка в стеке будет 104. D выполнит POP этой метки и отправит пакет в E. Стек меток на канале [D, E] будет [202,105,106,109,110]. Когда E получает этот пакет, верхняя метка в стеке - 202. Это селектор смежности, поэтому он выбирает конкретный интерфейс, а не конкретного соседа. E выберет правильный интерфейс, нижний из двух интерфейсов на рисунке, и POP этой метки. Верхняя метка теперь представляет собой SID узла для F, который можно удалить, поскольку пакет передается на F. E переработает пакет и также откроет эту POP. Стек меток на канале [E, F] будет [106,109,110]. Когда пакет достигает F, следующей меткой в стеке будет 106. Эта метка указывает, что пакет должен быть передан в G. F выполнит POP метки и передаст ее G. Стек меток на канале [F, G] будет [109,110]. Когда пакет достигает G, следующая метка в стеке - 109, что указывает на то, что пакет должен быть направлен к L. Поскольку G не соединен напрямую с L, он может использовать локальный, свободный от петель (обычно самый короткий) путь к L. В этом случае есть два пути с равной стоимостью к L, поэтому G выполнит POP метки 109 и переадресовывает по одному из этих двух путей к L. В сегменте [G, L] стек меток равен [110]. Предположим, что G решает отправить пакет через K. Когда K получает пакет, он будет иметь стек меток, содержащий [110], который не является ни локальной меткой, ни смежным узлом. В этом случае метка должна оставаться прежней, или сегмент должен иметь CONTINUE. Чтобы реализовать это, K поменяет текущую метку 110 на другую копию той же метки, так что K будет пересылать трафик с той же меткой. На канале [K,L] стек меток будет равен [110]. Когда L принимает пакет, единственной оставшейся меткой будет 110, что указывает на то, что пакет должен быть направлен в M. L будет выполнена POP метки 109, эффективно удалив всю инкапсуляцию MPLS, и перенаправит пакет в M. Когда M получает пакет, он пересылает его, используя обычный IP-адрес, в конечный пункт назначения - N. Концепция стека меток в MPLS реализована в виде серии заголовков MPLS, уложенных друг на друга. Pop метки означает удаление самой верхней метки, push метки означает добавление нового заголовка MPLS в пакет, а continue означает замену метки идентичной меткой. Когда вы работаете со стопкой меток, понятия внутреннего и внешнего часто сбивают с толку, особенно, поскольку многие люди используют идею метки и заголовка как взаимозаменяемые. Возможно, лучший способ уменьшить путаницу - использовать термин "заголовок" для обозначения всего стека меток и исходного заголовка, переносимого внутри MPLS, при этом обращаясь к меткам как к отдельным меткам в стеке. Тогда внутренний заголовок будет исходным заголовком пакета, а внешний заголовок будет стеком меток. Внутренняя метка будет следующей меткой в стеке в любой момент прохождения пакета по сети, а внешняя метка будет меткой, по которой пакет фактически переключается. Хотя в приведенном здесь примере используются IP-пакеты внутри MPLS, протокол MPLS предназначен для передачи практически любого протокола, включая Ethernet. Таким образом, SR MPLS не ограничивается использованием для передачи одного типа трафика, но может также использоваться для передачи кадров Ethernet по сети на основе IP / MPLS. Это означает, что SR можно использовать для поддержки первого варианта использования, обсуждаемого в этой статье, - предоставления услуг Ethernet по IP-сети. MPLS - это туннель? Много написанных и произнесенных слов были пролиты на вопрос о том, является ли MPLS протоколом туннелирования. Здесь туннелирование определяется как действие, а не протокол; это намеренная попытка отделить идею протокола туннелирования от концепции туннелирования как действия, предпринимаемого при передаче трафика через сеть. В случае MPLS это означает, что он может быть, а может и не быть протоколом туннелирования, в зависимости от того, как он используется - как и любой другой протокол. Например, если у вас есть стек меток, помещенных поверх пакета с IP-заголовком, внешняя метка, на которую коммутируется пакет, не является (технически) туннелем. Этот внешний заголовок в сети MPLS фактически является локальным для сегмента, поэтому он либо выталкивается, либо отправляется на каждом маршрутизаторе. Это аналогично заголовку Ethernet для каждого канала. Однако внутренний заголовок переносится в пакете MPLS и, следовательно, технически туннелируется. Внутренняя метка не используется на текущем устройстве для коммутации пакета; он просто переносится как часть пакета. Это определение не идеально. Например, в случае MPLS SWAP или SR CONTINUE, используется ли метка для коммутации пакета или нет? Кроме того, в отличие от заголовка Ethernet в пакете, заголовок MPLS фактически используется при принятии решения о пересылке. Заголовок Ethernet, напротив, просто используется для достижения следующего перехода, а затем отбрасывается. Возможно, более подходящим сравнением было бы следующее: Заголовок MPLS подобен заголовку Ethernet, который используется для достижения перехода за пределы устройства, на которое маршрутизатор в настоящее время передает. Независимо от этих ограничений, этого определения обычно достаточно, чтобы мысленно управлять различием между туннелированием и не туннелированием в MPLS, а также в большинстве других протоколов.
img
Системы записи телефонных звонков - специальный софт, который способен записывать телефонные разговоры, представляющиеся коммерческими компаниями на определенных условиях. Системы записи звонков могут быть полезным инструментом для ведения бизнеса, позволяющие увеличить эффективность услуг, которые вы оказываете клиентам. Преимущества записи телефонных разговоров Запись звонков помогает повысить производительность персонала: используя системы записи разговоров для отслеживания процесса общения Ваших сотрудников с вашими клиентами, что позволяет оценить сильные и слабые стороны процесса оказания услуг и с помощью наглядной демонстрации типичных ошибок указать сотрудником на них. Запись звонка может помочь урегулировать споры: запись ваших звонков поможет подтвердить любые устные соглашения, которые происходили во время телефонного разговора. Если у клиента возникли разногласия по поводу чего-либо, вы можете прослушать звонок и отправить его по электронной почте. Это может сэкономить вам много времени и денег. Это может защитить ваш персонал и репутацию вашей компании: в редких случаях, когда ваш персонал или ваша компания получают злоупотребления по телефону, запись звонка может помочь предоставить доказательства. Вы можете прослушать звонок и отправить его в соответствующие органы для дальнейшего расследования, что даст вашим сотрудникам душевное спокойствие и чувство защищенности во время рабочего процесса. Система записи разговоров Zoom Программное обеспечение ZOOM осуществляет запись входящий и исходящих звонков, помогая улучшить качество оказания услуг и соответствие требованиям и нормам общения с клиентами, повышая при этом эффективность работы качество обслуживания клиентов. Основные преимущества и функции ZOOM CallREC: Запись разговоров клиентов одновременно по нескольким каналам связи одновременно; Предоставляет функцию выбрать часть звонков, которые необходимо записывать, основываясь на ваших бизнес-требованиях, которые могут быть, как и четко продуманными, так и сгенерированные случайным образом; Быстрый поиск, воспроизведение и обмен записанными разговорами, хранящихся в удобной библиотеке; Проведение экспресс опросов для сбора и анализа необходимой информации для повышения качества обслуживания и повышения уровня лояльности клиентов; Наличие удобного интеллектуального интерфейса для предоставления отчетности о работе контакт центра с большим количеством простых, но при этом информационных панелей с различными актуальными показателями, предоставляя тем самым полную высококачественную бизнес аналитику; Система интеллектуальной записи разговоров Verint Предлагает круглосуточную запись разговоров сотрудников с клиентами, включая в себя отслеживание соблюдения необходимых коммуникационных инструкций для сотрудников, защищает права компании и обеспечивает тем самым наивысшее качество оказываемых услуг. Система записи Verint является отдельным приложением, включающее в себя запись разговоров с высококачественной системой обработки речи и последующего хранения данных в облачных хранилищах. Софт разработан для современных многоканальных контакт-центров, способная захватывать, индексировать, извлекать, хранить и архивировать до 100 входящих данных по нескольких каналам (включая АТС, VoIP, цифровую совместную работу в чате, электронную почту, мобильную голосовую связь / SMS) через единую систему записи. Программа имеет функцию пассивного фиксирования данные на экране сотрудника, а также нажатия клавиш и запуска этого процесса одновременно во время взаимодействия с клиентом. Система интеллектуальной записи разговоров Verint является мощным, проверенным решением, способным помочь вашей организации соответствовать современным тенденциям и стандартам, таким как отраслевой стандарт безопасности данных платежных карт (PCI DSS), HIPAA и HITECH и ускорить разрешение возникающих споров. Следует отметить то, что вся сохраненная информация шифруется специальной системой шифрования, разработанной компанией VERINT, что делает процесс записи разговоров безопасным для клиентов и вашей компании. Центр Речевых Технологий SmartLogger Smart Logger является средством, позволяющим осуществлять многоканальные вызовы и запись экрана одновременно. Данный процесс необходим для качественного отбора и анализа информации по средствам различных каналов связи (аналоговые, TDM, VoIP). Основное предназначение Smart Logger для обеспечения качества, анализа производительности и может быть использован для оптимизации работы вашего персонала и бизнес-процессов. Smart Logger способен решить любые практические задачи по записи звонков в сферах общественной безопасности, безопасности, бизнеса, а также и на промышленных, транспортных и энергетических предприятиях. Абсолютно все полученные данные проходят через собственную систему шифрования, а для получения доступа к необходимым данным требуется пройти систему аутентификации для того чтобы только авторизированные пользователи имели возможность получить доступ к хранящейся информации в облачных сервисах. Преимущества центра Smart Logger: Наличие более 40 конфигураций программных модулей Smart Logger, разработанных для различных практических задач необходимых вашей компании; Самое высокое качество записи звука на рынке: аудиозаписи, сделанные Smart Logger, могут использоваться для распознавания речи и голоса в дальнейшем; Водяные знаки и цифровая подпись, встроенные в записанный аудиозапись, для идентификации признаков вмешательства в запись телефонного звонка повышает безопасность и уверенность в достоверности полученных данных; Уникальные речевые технологии: лучшие фильтры подавления шума и аналитика обнаружения эмоций в процессе общения клиента и сотрудника; Широкий набор возможных параметров, не зависящих от языка для мониторинга и оценки эффективности работы персонала, включающие в себя: количество повторных вызовов, перерывы между клиентом и агентом, соотношение продолжительности речи клиент / агент, удержание / перевод вызовов на клиента, процент молчания; Запись экрана сотрудника при общении с клиентом; Многооконный интерфейс с одним окном, простой в использовании, персонализированный графический интерфейс для каждого сотрудника; Возможность осуществлять процесс записи и последующего анализа полученных данным круглосуточно;
img
В сегодняшней статье рассмотрим один из самых важных модулей Asterisk, который является необходимым инструментом в решении проблем со звонками (траблшутинга), статистики и отчётности. Речь пойдёт о модуле CDR Reports. Все примеры, традиционно, будем приводить на нашем FreePBX 13 /p> CDR (Call Detailed Record) – это подробная запись об акте коммутации (звонке), которые были проведены на телефонной станции. Такие записи есть практически у любой существующей цифровой АТС. Каждый производитель цифровой АТС предлагает свои сервисы для просмотра CDR. В Asterisk это модуль CDR Reports. Модуль CDR Reports позволяет формировать мгновенные отчёты о телефонных звонках, которые так или иначе проходили через Вашу IP-АТС. Это могут быть как внутренние звонки между сотрудниками компании, так и звонки из/во “внешний мир", Asterisk записывает всё. Можно посмотреть, как полную историю звонков, так и создать уникальный отчёт, отфильтровав записи по дате, временным интервалам, только исходящим звонкам, только по определенным номерам CID и так далее. Звонки, которые появятся в сформированном отчёте, можно прослушать прямо из модуля. Важно отметить, что модуль CDR Reports требует, чтобы CDR – записи хранились в базе данных. О том, как Asterisk записывает детализирует телефонные события, вы можете прочитать в статье про cистему CEL (Channel Event Logging) Для формирования вышеупомянутых отчётов, модуль CDR Reports имеет интерфейс. Нужно отметить, что неопытному пользователю может быть трудно работать с интерфейсом, поскольку он имеет множество опций, с которыми не все знакомы. Однако, напротив каждой опции предусмотрены подсказки, подробно описывающие для чего они нужны. Рассмотрим интерфейс на примере FreePBX 13. Для того, чтобы в него попасть, с главной страницы переходим по следующему пути Reports - > CDR Reports, как показано на рисунке. Перед нами открывается интерфейс модуля CDR Reports с множеством фильтров Как видно, благодаря имеющимся фильтрам можно создавать самые разные отчёты. Коротко рассмотрим каждый фильтр: Call Date – Дата звонка. Справа можно выбрать временной промежуток, который нас интересует CallerID Number – Номер звонящего. Выводит все записи по определенному интересующему номеру телефона. Можно ввести множество номеров, разделяя их запятыми. Справа можно выбрать условия совпадения – “Начинается с", “Содержит", “Заканчивается на" и “Совпадает точно" данные условия можно применить и для остальных фильтров CallerID Name – Имя звонящего Outbound CallerID Number – Номер, с которого звонят, при исходящем звонке DID – Искать по набранному номеру. Это удобно, когда в компании несколько входящих линий Destination –Искать по номеру назначения. Например, когда звонок переведен на внутреннего сотрудника или звонок попал на Ring группу Destination CallerID Name – Искать по имени, присвоенного номеру назначения Userfield – Искать по полю Userfield, если оно включено на Extension’е Account Code – Искать по Аккаунт коду Duration – Продолжительность звонка. Справа можно выбрать интервал в секундах Disposition – Искать по характеру обработки вызова. Например: ANSWERED, BUSY, NO ANSWER. Позволяет найти не отвеченные звонки, звонки которые были приняты, звонки, которые не были приняты по причине занятости абонента Также записи можно сгруппировать по различным параметрам при помощи опции Group By Как только все нужные фильтры заполнены интересующими входными данными, необходимо нажать клавишу Search, чтобы сформировался отчёт Интерфейс статистики Merion Metrics Как видите, стандартный модуль CDR Report содержит очень много различных фильтров и параметров, которые, зачастую, просто не нужны рядовому пользователю. Именно поэтому, мы создали свой собственный интерфейс построения отчётов для Asterisk, интуитивно понятный и упрощенный. Наша разработка обладает не только базовым функционалом модуля CDR Report, но также позволяет формировать визуализированные отчёты и диаграммы. Посмотрите видео о том, как много радости приносит наш интерфейс статистики для IP - АТС Asterisk: Интерфейс можно попробовать бесплатно, пройдя по ссылке -
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59