По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Всем привет! Сегодня в статье рассмотрим установку CentOS 7 Minimal, первичную настройку сети и установку графического интерфейса под названием Mate. У нас уже есть статья и видео об установке немного иной редакции CentOS 7 – Network Edition, но при установке Minimal есть несколько тонкостей, о них – ниже. Первое отличие в том, что образ несколько больше - 700 Мб, но это всё равно несравнимо с объемом DVD или Full редакции. Следующее отличие, вытекающее из предыдущего – отсутствует возможность выбрать дополнительный софт для установки (скриншот ниже): В CentOS 7 также добавилась возможность включить сетевой интерфейс непосредственно во время установки – в 6 версии такого не было, однако, я дополнительно продемонстрирую самый наглядный способ настройки сетевого интерфейса в 7 версии. Процесс установки Итак, выполняем все шаги последовательно как указано в нашем видео и статье по установке сетевой версии данной ОС, ждём 15-30 минут и вводим свои логинпароль (предварительно подключившись через терминал). Первым желанием было проверить, работает ли сетевой интерфейс и был ли ему назначен адрес – я ввёл команду ifconfig, и, как оказалось, данная команда на 7 версии является устаревшей и вместо неё необходимо использовать команду ipaddr для вывода информации об интерфейсах и команду iplinkдля вывода статистики на них же. Но так все привыкли к стандартным командам пакета net-tools, его необходимо будет установить с помощью команды yum install net-tools. Однако, помня первое ощущение непонимания, когда у меня не работала сеть в минимальной инсталляции на 6 версии, я хочу дополнительно показать очень простой способ её настройки – об этом ниже. Важно! Команда ifconfig устарела. Для сетевого взаимодействия с сервером рекомендуем пользоваться командой «ip» (ip -a), которая по функциональности (с точки зрения L2 и L3) превосходит «ifconfig». Настройка сетевых интерфейсов с помощью nmtui Вводим команду nmtui - в итоге должен запуститься простой графический интерфейс для настройки сети (скриншот ниже): Я, к примеру, хочу изменить настройки единственного интерфейса – выбираем первую опцию Edit a connection и видим следующую картину: Выбираем Edit… и делаем с интерфейсом всё, что вздумается :) Как видно на скриншоте ниже, наш сервер получил IP - адрес по DHCP – меня это устраивает и я оставлю всё как есть. Главной целью было продемонстрировать данную утилиту – nmtui Установка MATE и необходимых пакетов Итак, почему MATE? Ответ прост – он гораздо легче дефолтного Gnome, очень нетребователен к ресурсам и крайне прост в установке. Итак, производим несколько простых шагов по установке пакетов(ниже): yum groupinstall "Development Tools" - установка необходимого комплекта пакетов для работы GUI (только если уже не установлены) ; yum install epel-release - установка EPEL репозитория; yum groupinstall "X Window system" - установка группового пакета X Window System, это займет около 5 минут. Сам пакет имеет объем 73 Мб; yum groupinstall "MATE Desktop" - установка непосредственно Mate – довольно объемный пакет - 506 Мб; Далее, запускаем GUI! Вводим командуsystemctl isolate graphical.target, вводим имя юзера и пароль, и видим графический интерфейс (скриншот ниже): Если хотите чтобы система по умолчанию запускалась в графическом виде, введите команду systemctl set-default graphical.target rm '/etc/systemd/system/default.target' ln -s '/usr/lib/systemd/system/graphical.target' '/etc/systemd/system/default.target'
img
Компания Juniper является очень крупным производителем сетевого оборудования в мире - после Cisco and Huawei. После того как вы купили, установили и скоммутировали новое оборудование, возникает вопрос о его правильной настройке. Преимуществом коммутаторов от производителя Juniper, в основном, является возможность объединения до шести коммутаторов в одно единое устройство с надежным и удобным управлением портами, сохраняя стабильную и бесперебойную работу сети. Настройка сетевого интерфейса Настройка QoS (качество обслуживания) Virtual Chassis (объединение коммутаторов) Реализация возможности сброса до заводских настроек Настроив данные компоненты, вы сможете реализовать работу сети с использованием в ней большого количества устройств для осуществления передачи трафика. Настройка сетевого интерфейса Интерфейс коммутатора отвечает за реализацию передачи данных между сетью и пользователем, что и является главной задачей коммутатора. Его конфигурация осуществляется с помощью следующих строк кода: root> configure Entering configuration mode [edit] root# edit interfaces [edit interfaces] root# Конфигурация L3: [edit interfaces] root# set em0 unit 0 family inet address 100.0.0.1/30 Где: Em0 - физический интерфейс, а Family inet - позволяет выбрать протокол интерфейса. Команда "show" позволит из Configuration Mode проверить результат вашей настройки: [edit interfaces] root# show em0 { unit 0 { family inet { address 100.0.0.1/30; } } } [edit interfaces] Теперь примените настройки с помощью следующей команды: root# commit commit complete С помощью команды ping осуществим проверку конфигурации: root> ping 100.0.0.2 rapid PING 100.0.0.2 (100.0.0.2): 56 data bytes !!!!! --- 100.0.0.2 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.402/0.719/1.306/0.343 ms Конфигурация L2 root> configure Entering configuration mode [edit] root# edit interfaces em0 [edit interfaces em0] Необходимо задать дуплекс на интерфейсе: [edit interfaces em0] root# set link-mode full-duplex [edit interfaces em0] root# Примечание: L2 - устройства, работающие на канальном уровне, при этом коммутатором занимается фреймами. А L3 взаимодействуют с IP-адресами и осуществляют маршрутизацию. Конфигурация L3 включает большее число параметров за счет расширенного функционала. Настройка Virtual Chassis После правильной настройки интерфейса, следует перейти к объединению коммутаторов, которое позволит облегчить управление устройствами, а также повысить надежность работы сети, за счет взаимозаменяемости устройств. Следует отметить, что коммутаторы Juniper не имеют отдельным порт VCP, поэтому придется настраивать обычный интерфейс в качестве VCP. Конфигурация VCP вручную: Включите все коммутаторы, также вам понадобятся их заводская маркировка, которую следует записать. Для примера используем следующие: CT0216330172 CV0216450257 Включите коммутатор, который будет выполнять функцию master switch, после чего сделайте сброс настройка с помощью следующей строки кода: request system zeroize Перезагрузив систему, выполните следующие строки: ezsetup set system host-name sw_master set system domain-name metholding.int set system domain-search metholding.int set system time-zone Europe/Moscow set system root-authentication plain-text-password set system name-server 10.10.6.26 set system name-server 10.10.6.28 set system services ssh protocol-version v2 set system ntp server 10.10.1.130 version 4 set system ntp server 10.10.1.130 prefer set vlans Management description 10.10.45.0/24 set vlans Management vlan-id 100 set vlans Management l3-interface vlan.1 set interfaces vlan unit 1 family inet address 10.10.45.100/24 set routing-options static route 0.0.0.0/0 next-hop 10.10.45.1 set interfaces ge-0/0/47 unit 0 family ethernet-switching port-mode trunk set interfaces ge-0/0/47 unit 0 family ethernet-switching vlan members Management Активируем preprovisioned configuration mode: set virtual-chassis preprovisioned Вносим серийные номера оборудования: set virtual-chassis member 0 serial-number CT02/16330172 role routing-engine set virtual-chassis member 1 serial-number CV0216450257 role routing-engine set virtual-chassis no-split-detection Проверьте результат, с помощью следующей строки: root@sw-master> show virtual-chassis status Обнулите конфигурацию и включайте остальные коммутаторы: request system zeroize Раздел virtual-chassis в конфигурации должен быть пустой, а для подстраховки, используйте команду: delete virtual-chassis Настроим порты VCP для каждого коммутатора. Для данного примера, соедините коммутаторы портами ge-0/0/0 и ge-0/0/1 соответственно. Теперь задайте эти строки кода на каждом из коммутаторов: request virtual-chassis vc-port set pic-slot 0 port 0 request virtual-chassis vc-port set pic-slot 0 port 1 --------------------ВЫВОД---------------------------- root> show interfaces terse Interface Admin Link Proto Local Remote vcp-255/0/0 up up vcp-255/0/0.32768 up up vcp-255/0/1 up up vcp-255/0/1.32768 up up ge-0/0/2 up down ge-0/0/2.0 up down eth-switch Теперь два коммутатора объединились, проверить можно с помощью команды: show virtual-chassis status show virtual-chassis vc-port Если вы захотите добавить дополнительных участников к virtual-chassis, вам будет необходимо очистить конфигурацию нового коммутатора: show interfaces terse | match vcp Если есть, их надо удалить с командой: request virtual-chassis vc-port delete pic-slot 0 port 0 Внесите серийный номер дополнительного устройства: set virtual-chassis member 2 serial-number CT0217190258 role line-card Настройка портов VCP в новом коммутаторе, в котором мы соединяем следующими портами - ge-0/0/0 и ge-0/0/1: request virtual-chassis vc-port set pic-slot 0 port 0 request virtual-chassis vc-port set pic-slot 0 port 1 Теперь проверьте их наличие: show interfaces terse | match vcp НастройкаQoS Технология QoS используется для распределение используемого трафика и ранжирование на классы с различным приоритетом. Технология необходима для увеличения вероятности пропускания трафика между точками в сети. Сейчас мы рассмотрим деление потока трафика с приоритетом на ip-телефонию и видеоконференцсвязь на коммутаторе и использованием настроек по умолчанию class-of-service (CoS). Допустим, что ip-телефоны подключены к коммутатору, а для маркировки ip-пакетов от ip-PBX и других ip-телефонов используются следующие показания DSCP: 46 - ef - медиа (RTP) 24 - cs3 - сигнализация (SIP, H323, Unistim) 32 - cs4 - видео с кодеков (RTP) 34 - af41 - видео с телефона, софтового клиента, кодека (RTP) 0 - весь остальной трафик без маркировки. DSCP - является самостоятельным элементом в архитектуре сети, описывающий механизм классификации, а также Обеспечивающий ускорение и снижение задержек для мультимедийного трафика. Используется пространство поля ToS, являющийся компонентом вспомогательным QoS. Теперь требуется dscp ef и af отнести к необходимым внутренним классам expedited-forwarding и assured-forwarding. За счет конфигурации classifiers, появляется возможность создания новых классов. ex2200> show configuration class-of-service classifiers dscp custom-dscp { forwarding-class network-control { loss-priority low code-points [ cs6 cs7 ]; } forwarding-class expedited-forwarding { loss-priority low code-points ef; } forwarding-class assured-forwarding { loss-priority low code-points [ cs3 cs4 af41 ]; } } ex2200> show configuration class-of-service schedulers sc-ef { buffer-size percent 10; priority strict-high; } sc-af { shaping-rate 20m; buffer-size percent 10; } sc-nc { buffer-size percent 5; priority strict-high; } sc-be { shaping-rate percent 80; buffer-size { remainder; } } Наименования можно выбрать произвольно, но а процент выделенных буферов - в соответствии с необходимостью. Ключевым приоритетом работы QoS является определение трафика с ограничением пропускающей полосы в зависимости от потребности в ней. Шедулеры сопоставляются в соответствии с внутренними классами, в результате которого scheduler-map и classifier необходимо применяется ко всем интерфейсам, используя и описывая их в качестве шаблона. К интерфейсу возможно применять специфические настройки, подразумевающие возможность написания всевозможных scheduler и scheduler-maps для различных интерфейсов. Конечная конфигурация имеет следующий вид: ex2200> show configuration class-of-service classifiers { dscp custom-dscp { forwarding-class network-control { loss-priority low code-points [ cs6 cs7 ]; } forwarding-class expedited-forwarding { loss-priority low code-points ef; } forwarding-class assured-forwarding { loss-priority low code-points [ cs3 cs4 af41 ]; } } } host-outbound-traffic { forwarding-class network-control; } interfaces { ge-* { scheduler-map custom-maps; unit 0 { classifiers { dscp custom-dscp; } } } ae* { scheduler-map custom-maps; unit 0 { classifiers { dscp custom-dscp; } } } } scheduler-maps { custom-maps { forwarding-class network-control scheduler sc-nc; forwarding-class expedited-forwarding scheduler sc-ef; forwarding-class assured-forwarding scheduler sc-af; forwarding-class best-effort scheduler sc-be; } } schedulers { sc-ef { buffer-size percent 10; priority strict-high; } sc-af { shaping-rate 20m; buffer-size percent 10; } sc-nc { buffer-size percent 5; priority strict-high; } sc-be { shaping-rate percent 80; buffer-size { remainder; } } } Перед использованием данной настройки, проверьте командой commit check. А при наличии следующей ошибки, следует учесть следующее: [edit class-of-service interfaces] 'ge-*' One or more "strict-high" priority queues have lower queue-numbers than priority "low" queues in custom-maps for ge-*. Ifd ge-* supports strict-high priority only on higher numbered queues. error: configuration check-out failed В итоге мы не можем указать приоритет "strict-high" только для 5-ой очереди, когда у 7-ой останется приоритет "low". При этом можно решить проблему следующим образом: настроить для network-control приоритет "strict-high". Применив конфигурацию, определенный процент фреймов в очередях будет потеряна. Требуется обнулить счетчики, проверить счетчики дропов через некоторое время, где переменные значения не равны нулю. clear interfaces statistics all show interfaces queue | match dropped | except " 0$" При росте счетчиков дропа в конфигурации есть ошибка. Если вы пропустили описание в class-of-service interfaces шаблоном или в явном виде, то трафик в классах со стопроцентной вероятностью дропнется. Правильная работа выглядит следующим образом: ex2200> show interfaces queue ge-0/0/22 Physical interface: ge-0/0/22, Enabled, Physical link is Up Interface index: 151, SNMP ifIndex: 531 Forwarding classes: 16 supported, 4 in use Egress queues: 8 supported, 4 in use Queue: 0, Forwarding classes: best-effort Queued: Transmitted: Packets : 320486 Bytes : 145189648 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Queue: 1, Forwarding classes: assured-forwarding Queued: Transmitted: Packets : 317 Bytes : 169479 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Queue: 5, Forwarding classes: expedited-forwarding Queued: Transmitted: Packets : 624 Bytes : 138260 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Queue: 7, Forwarding classes: network-control Queued: Transmitted: Packets : 674 Bytes : 243314 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Переход к заводским настройкам Если вам избавится от вашей конфигурации, которая работает некорректно вы можете сбросить настройки до заводских параметров. Советуем использовать данную функции, предусмотренную производителем оборудования, в случае реальной сложности в поиске ошибки, выполнив конфигурацию заново, вы можете заметно сэкономить свое время. Самый простой способ, это ввод следующей команды: load factory defaults После ввода команды, система оповестит Вас о том, что в данный момент будет осуществлена активация заводских настроек по умолчанию. А с помощью привычной команды "commit" активируем настройки и перезагружаемся. Мы рассмотрели базовые настройки коммутаторов Juniper, позволяющих создание надежной и гибкой сети для различных нужд.
img
В прошлой статье мы рассказывали о ресурсе HIBP, на котором можно, проверить находится ли ваш email или пароль в базе взломанных учётных данных. В этой статье расскажем о расширении от Google, которое может выполнять такую же проверку автоматически на любом сайте, где вы вводите учётные данные, используя браузер Google Chrome. Расширение, описанное в данной статье, актуально только для пользователей браузера Google Chrome. Остальным же, мы надеемся, будет просто полезно ознакомиться с возможностями решения. Похоже, что факт обнаружения баз слитых учёток Collection #1 и последующих более крупных Collection #2-5, не остался без внимания Google. Потому что 5 февраля (в день безопасного Интернета, кстати) они объявили о создании сразу двух расширений, которые призваны сделать процесс работы с вэб-ресурсами и приложениями ещё более безопасным. Про одно из них мы бы хотели рассказать в нашей статье. Password Checkup Проверяет учётные данные, которые вы вводите на каждом сайте или в приложении через Google, по базе из свыше 4 миллиардов взломанных логинов и паролей. Если расширение обнаруживает ваши логин и пароль (то есть оба типа данных, которые необходимы для получения доступа к вашему аккаунту) в списке взломанных, то оно генерирует оповещение с предложением сменить скомпрометированные данные. При этом, расширение не будет уведомлять о том, что вы используете слабый пароль или о том, что ваш старый, не актуальный пароль был скомпрометирован. Google заявляет, что разрабатывал расширение так, чтобы учетные данные, которые вы вводите, никогда не попали не только в злоумышленникам, но и в сам Google, в этом им помогали эксперты в области криптографии Стэндфордского Университа. Итак, как это работает? Когда вы вводите на каком-либо сайте свой логин и пароль расширение обращается к серверам Google для того, чтобы проверить находятся ли введённые учётные данные в списке скомпрометированных. При этом, в запросе не передаются сами логин и пароль. То есть расширение опрашивает сервер, не передавая туда запрашиваемую информацию. При этом, важно исключить возможность использования расширения злоумышленниками, которые будут брутить сайты и пробовать получить от расширения информацию о скомпрометированных учётках. Для этого в расширении применяется сразу несколько технологий шифрования, многоразовое хэширование вводимой информации, а также технологии Private Set Intersection (PSI) и k-annonimity. Google имеет в своём распоряжении базу из взломанных учётных данных, содержащих около 4 миллиардов записей. Однако, это не учётные данные в открытом виде, а их захэшированная и зашифрованная копия, ключ от которой известен только Google. Каждый раз, когда вы вводите свой логин и пароль, расширение Password Checkup будет отправлять на сервера Google захэшированную копию этих данных, ключ от которых будет известен только вам. В свою очередь на сервере Google эта копия также будет зашифрована специальным ключом. Последнее преобразование происходит локально в самом расширении - полученная копия от Google дешифруется и если результат сходится с тем хэшом скомпрометированных учётных данных, что хранится на сервере Google - то пользователю выводится Алерт с рекомендациями по смене пароля. Если вы пользуетесь браузером Google Chrome, то рекомендуем установить данное расширение, чтобы обезопасить свои аккаунты от доступа к ним третьих лиц. И никогда, пожалуйста, не используйте одни и те же пароли на разных сайтах.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59