По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
С помощью групповых политик можно устанавливать различные параметры, применяемые к компьютеру и пользователю. Рассмотрим Предпочтение групповой политики "Ярлыки". С помощью этого предпочтения можно создать (удалить) или изменить (обновить) ярлык, установить клавиши быстрого вызова, изменить иконку ярлыка. Указать как должно быть открыто окно, т.е. в обычном размере или свернутым/развёрнутом на весь экран. Можно указать URL, путь к любому файлу или папке, общедоступному сетевому ресурсу, сделать ссылку на элемент панели управления. Удобство развертывания ярлыка через политики в том, что, если пользователь удалит ярлык, ему достаточно будет сделать "Выход из системы" или перезагрузить компьютер, и ярлык вновь появится. Если приложение "переедет" на другой сервер, то достаточно будет изменить путь в политике и все. Тем самым снижается нагрузка на первую-вторую линию службы технической поддержки. > Рассмотрим пример создания ярлыка Панели управления на рабочий стол. Для этого нужно запустить оснастку Group Policy Management, это можно сделать на контроллере домена, либо на компьютере с установленными оснастками управления (GPMC). Запустить оснастку можно несколькими способами: через меню "Пуск" открыв AdministrativeTools -> GroupPolicyManagement. Из "ServerManager" выбрав в меню Tools-> GroupPolicyManagement или через "Выполнить" (Win+R) набрав gpmc.msc В открытой консоли GPMC развернем узел Domain. Затем правой кнопкой мыши и выберем Create a GPO in this domain, and Link it here. В открывшемся окне задайте имя политики, желательно называть ее так, чтобы сразу было понятно, что она делает. В правой части окна можно увидеть различные параметры данной политики. К какой OU прилинкована, используются ли фильтры безопасности, можно посмотреть, не открывая саму политику какие в ней выполнены настройки и каким пользователям или группам безопасности можно редактировать ее. Редактирование политики происходит нажатием правой кнопки мыши и выбора Edit. Создадим ярлык Панели управления на Рабочем столе. Для этого в редакторе политики раскроем User Configuration -> Preferences -> Windows Settings -> Shortcuts. Правой кнопкой мыши на Shortcuts -> New -> Shortcut. В Свойствах нового ярлыка из возможных действий укажем Create, дадим понятное имя, ниже выберем ShellObject и Location Desktop. Через Обзор укажем Target object Control Panel. Также можно указывать и другие места для создания ярлыка, доступно 15 расположений, можно установить ярлык сразу для всех пользователей. Если делать ярлык на программу, нужно будет выбрать Объект файловой системы (FileSystemObject), в этом случае появится дополнительное поле Arguments, в него прописываются параметры, которые будут использоваться при открытии созданного ярлыка. Для того, чтобы добавить Быстрый запуск с помощью сочетаний клавиш Ctrl+Alt, просто нажмите на эту клавишу. При наведении мышки на ярлык можно установить подсказку. Поле, отвечающее за это, называется Comment. Просто введите свой текст в это поле. Вкладка Common содержит в себе общие параметры элемента и различные типы запуска, к примеру, можно "Применить один раз и больше не применять повторно". Кнопка Targeting позволяет устанавливать условия, при которых политика должна будет примениться и активируется при установке соответствующей галочки Item-leveltargeting. Выполним команду gpupdate и увидим, что на Рабочем столе появился ярлык на Панель управления. В этой статье рассмотрели создание ярлыка используя средства групповых политик.
img
Есть два типа алгоритмов шифрования, которые используются для шифрования данных. Это симметричные и асимметричные алгоритмы. В этой статье мы подробно изучим функции и операции алгоритмов симметричного шифрования. Чтобы зашифровать текстовое сообщение, требуются как шифр, так и ключ. При симметричном шифровании ключ используется для шифрования сообщения открытого текста в зашифрованный текст, и тот же ключ используется для дешифрования зашифрованного текста обратно в открытый текст. Хотя алгоритмы симметричного шифрования обычно используются во многих системах, основным недостатком является то, что в случае потери или кражи секретного ключа зашифрованный текст может быть взломан. Если злоумышленник сможет получить ключ, он сможет расшифровать сообщение и просмотреть его содержимое. Поэтому чрезвычайно важно, чтобы ключ всегда был в безопасности. Симметричные алгоритмы используют длину ключа в диапазоне от 40 до 256 бит. Эти длины ключей намного короче, чем те, которые используются в асимметричных алгоритмах. Однако симметричные алгоритмы способны обеспечить лучшую производительность, например, при более быстром шифровании данных, по сравнению с асимметричными алгоритмами. Чтобы лучше понять, как работают симметричные алгоритмы, давайте представим, что есть два пользователя, Алиса и Сергей Алексеевич, которые хотят обеспечить конфиденциальность сообщений, которыми они обмениваются. Оба пользователя знают о Pre-Shared Key (PSK) или секретном ключе до обмена сообщениями. На следующем рисунке демонстрируется, что Алиса использует секретный ключ для шифрования текстового сообщения перед его отправкой Сергею Алексеевичу: После того, как сообщение будет зашифровано, Алиса отправит его Сергею Алексеевичу, который будет использовать тот же PSK или секретный ключ, чтобы расшифровать сообщение и получить исходное текстовое сообщение, как показано ниже: Тот же процесс повторяется всякий раз, когда Сергей Алексеевич хочет отправить сообщение Алисе. Тот же ключ, который используется для шифрования данных, используется для дешифрования сообщения. Симметричные алгоритмы Симметричные алгоритмы могут шифровать данные, используя либо блочный шифр, либо потоковый шифр. Блочный шифр берет блок фиксированной длины открытого текстового сообщения и выполняет процесс шифрования. Эти блоки обычно являются 64-битными или 128-битными блоками. На следующем рисунке представлен блочный шифр: В свою очередь, потоковый шифр будет шифровать либо один бит, либо один байт за раз. Вместо того, чтобы шифровать весь блок открытого текста, представьте, что с помощью потокового шифра размер блока уменьшается до одного бита или одного байта. На следующем рисунке представлен потоковый шифр: Считается, что потоковые шифры выполняют шифрование данных быстрее, чем блочные шифры, поскольку они непрерывно шифруют данные по одному биту или одному байту за раз. Ниже приводится список симметричных алгоритмов и их характеристики: Data Encryption Standard (DES): это очень старый алгоритм симметричного шифрования, который шифрует данные с использованием блоков размером 64 бита и размером ключа 54 бита. Triple Data Encryption Standard (3DES): это более новая версия DES. 3DES выполняет процесс шифрования трижды. Это означает, что первый раунд берет данные открытого текста и выполняет шифрование для создания зашифрованного текста. Он будет использовать зашифрованный текст в качестве входных данных и снова выполнит его шифрование, что является вторым этапом. Он возьмет новый зашифрованный текст из второго раунда и выполнит его шифрование, чтобы создать окончательный результат, который завершает третий раунд шифрования, отсюда и название тройной DES. 3DES использует ключи размером 112 бит и 168 бит. Advanced Encryption Standard (AES): широко используется во многих современных системах передачи данных и протоколах. AES использует ключи размером 128, 192 и 256 бит. Он выполняет шифрование данных в блоках фиксированного размера: 128, 192 и 256 бит. AES считается намного более безопасным, чем алгоритмы шифрования DES и 3DES. Безопасный сетевой протокол Secure Shell (SSH) версии 2 использует алгоритм AES с режимом счетчика (AES-CRT) в качестве предпочтительного алгоритма шифрования данных. Software-Optimized Encryption Algorithm (SEAL): это еще один симметричный алгоритм. SEAL - это алгоритм потокового шифрования, который использует размер ключа 160 бит. Rivest Cipher (RC): это серия наборов шифров, созданных Роном Ривестом, таких как RC2, RC3, RC4, RC5 и RC6. Наиболее распространенным является RC4, потоковый шифр, использующий размер ключа до 256 бит. Асимметричные алгоритмы шифрования Асимметричные алгоритмы выполняют шифрование данных с использованием двух разных ключей в виде пары ключей. Это означает, что один ключ используется для шифрования данных, а другой-для расшифровки сообщения. Если какой-либо ключ потерян или украден, сообщение не будет взломано или прочитано. На следующем рисунке показан пользователь Алиса, использующий ключ для шифрования текстового сообщения: Когда целевой хост, Сергея Алексеевича, получает сообщение от отправителя, он будет использовать другой ключ для расшифровки сообщения, как показано на следующем рисунке: Асимметричные алгоритмы используют пару ключей, известную как открытый (public) и закрытый (private) ключи. Открытый ключ предоставляется любому, кто хочет связаться с вами, отсюда и название открытый ключ. Закрытый ключ хранится у вас. Только пользователи пары ключей могут шифровать и расшифровывать данные. Никакие другие ключи не могут быть использованы для расшифровки сообщения, зашифрованного вашим закрытым ключом. Важное примечание! Асимметричное шифрование использует размер ключа от 512 до 4096 бит. Однако рекомендуется размер ключа в 1024 бита или больше. Чтобы лучше понять принцип работы этих открытых и закрытых ключей, давайте представим, что есть два пользователя, Сергей Алексеевич и Алиса, которые хотят зашифровать данные между собой, используя асимметричное шифрование. Для начала предположим, что Алиса хочет отправить сообщение Сергею Алексеевичу. Для этого Сергей Алексеевич должен создать пару, открытого и закрытого ключей и поделиться открытым ключом с Алисой следующим образом: Закрытый ключ хранится у Сергея Алексеевича, а Алиса получает только открытый ключ Сергея Алексеевича. Алиса будет использовать открытый ключ Сергея Алексеевича для шифрования любого сообщения, которое она хочет отправить Сергею Алексеевичу. Когда Сергей Алексеевич получит сообщение, то он будет использовать свой закрытый ключ, чтобы расшифровать сообщение и прочитать его содержимое. На следующем рисунке показано, как Алиса отправляет Сергею Алексеевичу зашифрованное сообщение: Как показано на предыдущем рисунке, Алиса использовала открытый ключ Сергея Алексеевича для шифрования сообщения. Если злоумышленник перехватит зашифрованный текст во время передачи, сообщение будет в безопасности, поскольку злоумышленник не имеет закрытого ключа Сергея Алексеевича. Ниже приведены некоторые сетевые протоколы, использующие асимметричные алгоритмы: SSH Secure Sockets Layer (SSL) Internet Key Exchange (IKE) Pretty Good Privacy (PGP) Ниже приведен список асимметричных алгоритмов и их функции: Diffie-Hellman (DH): DH не является алгоритмом шифрования данных, а скорее используется для безопасной доставки пар ключей по незащищенной сети, такой как Интернет. Проще говоря, он позволяет Сергею Алексеевичу и Алисе согласовывать ключ, который может использоваться для шифрования сообщений, отправляемых между ними. DH использует ключи размером 512 бит, 1024 бит, 2048 бит, 3072 бит и 4096 бит. Ниже приведен список различных групп DH и их соответствующих размеров ключей: группа DH 1: 768 бит, группа 2 DH: 1024 бит, группа 5 DH: 1536 бит, группа 14 DH: 2048 бит, группа 15 DH: 3072 бит, и группа 16 DH: 4096 бит. Digital Signature Standard (DSS): DSS - это асимметричный алгоритм, который используется для цифровых подписей. Алгоритм цифровой подписи (DSA) - это алгоритм с открытым ключом, который использует схему подписи ElGamal. Размеры ключей варьируются от 512 до 1024 бит. Rivest-Shamir-Adleman (RSA): этот алгоритм шифрования был создан Ron Rivest, Adi Shamir, и Leonard Adleman. Он был разработан как алгоритм асимметричного шифрования, который использует пары открытого и закрытого ключей между устройствами. RSA использует ключи размером от 512 до 2048 бит. EIGamal: EIGamal - еще один алгоритм асимметричного шифрования, который использует пару открытого и закрытого ключей для шифрования данных. Этот алгоритм основан на процессе согласования ключей DH. Примечательной особенностью использования этого алгоритма является то, что он принимает открытый текст (input) и преобразует его в зашифрованный текст (output), который вдвое превышает размер входного сообщения. Elliptical Curve (EC): EC используется с асимметричным шифрованием. EC использует кривые вместо чисел. Поскольку мобильные устройства, такие как смартфоны, не имеют высокопроизводительного процессора и объема памяти, как компьютер, EC использует ключи меньшего размера.
img
Привет! Сегодня в статье мы покажем, как собирать трейсы с Cisco Unified Communications Manager (CUCM) . Это используется для траблшутинга системы, а так же эта информация будет необходима TAC инженерам Cisco при заведении заявки. Для того чтобы снять трейсы нам понадобится программа Real-Time Monitoring Tool. О том как ее установить можно прочитать в нашей статье. Сначала идем в меню Cisco Unified Serviceability, и переходим во вкладку Trace → Configuration. Здесь выбираем наш сервер, в строке Server, в строке Service Group выбираем CM Services, а в строке Service указываем Cisco CallManager. Дефолтные настройки показаны на скриншоте. Убедитесь, что галочка стоит в пункте Trace On, а в выпадающем меню Debug Trace Level выбран пункт Detailed. Тоже самое нужно повторить на других серверах кластера, если они имеются. Далее запускаем RTMT и подключаемся к нашему серверу. Тут переходим во вкладку System → Tools → Trace & Log Central. Нажимаем Collect Files и в открывшемся окне ставим галочки в строке Cisco CallManager выбрав необходимые сервера. Нажимаем Next и в следующем окне ставим галочки в пунктах Event Viewer → Application Log и Event Viewer → System Log. Далее необходимо выбрать временной промежуток снятия наших данных в поле Collection Time. В этом же окне, в поле Download File Options указываем папку, в которою все будет скачиваться. Теперь можно нажать Finish и после сбора информации нужные нам файлы окажутся в указанной ранее папке.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59