По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В сегодняшней статье расскажем о первичной защите Вашего Asterisk’a - Fail2ban. На самом деле Fail2ban - это стандартный функционал любой операционной системы на базе Linux, который сканирует лог-файлы и блокирует подозрительные IP –адреса. На самом деле Fail2ban - это стандартный функционал любой операционной системы на базе Linux, который сканирует лог-файлы и блокирует подозрительные IP –адреса. Fail2ban - это система предотвращения вторжений (Intrusion Prevention System), которая защищает сервер от атак типа Brute-force (Полный перебор). Написанный на языке программирования Python, Fail2ban может работать поверх систем POSIX, которые оперируют локально установленным брандмауэром (Firewall) или системой контроля пакетов, таких как TCP Wrapper или IPTABLES Стоит заметить, что Fail2ban является лишь системой предотвращения вторжений, но не в коем случае не системой обнаружения вторжений или анти-хакерским инструментом Когда речь идёт о работе Fail2ban с Asterisk, необходимо рассказать о роли IPTABLES в данном взаимодействии. IPTABLES - это административный инструмент оболочки Linux, который предназначается для управления фильтрацией IP адресов и NAT. IPTABLES используется проверки таблиц правил фильтрации пакетов IP в ядре Linux . В IPTABLES могут быть определены несколько различных таблиц. Каждая таблица содержит ряд встроенных цепочек (chains) и может также содержать цепочки, определяемые пользователем. Каждая цепь представляет собой список правил, которым могут совпадать пакеты. Каждое правило определяет, что делать с пакетом, который имеет соответствие правилам. Для проверки IPTABLES, необходимо ввести следующую команду с правами рута: # iptables –L Эта команда отобразит список цепочек (chains), которые называются INPUT, FORWARD и OUTPUT, в самом низу ещё есть кастомные цепи, созданные пользователем. Дефолтные IPTABLES выглядят примерно следующим образом: Chain INPUT (policy ACCEPT) target prot opt source destination Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination По умолчанию , IPTABLES разрешают весь трафик. Когда IPTABLES работает в паре с Fail2ban, то трафик не будет блокироваться, пока Fail2ban не создаст запрещающих правил. Fail2ban , по умолчанию, вставляет правила в верхней части цепи, поэтому они имеют приоритет над правилами, настроенными в IPTABLES пользователем. Это хорошо, потому что можно сначала разрешить весь SIP трафик, а затем Fail2ban будет блокировать отдельных хостов, которые совершили попытку нападения, до тех пор, пока они не будут разрешены этим правилом снова. Стандартная настройка Fail2ban приведена ниже. Данные изменения, вносятся в файл /etc/fail2ban/jail.conf [asterisk-iptables] enabled = true filter = asterisk action = iptables-allports[name=ASTERISK, protocol=all] sendmail-whois[name=ASTERISK, dest=root, sender=fail2ban@merionet.ru] logpath = /var/log/asterisk/security maxretry = 5 bantime = 259200 А теперь расшифруем, что же означает данная запись. Это фильтр, который на 3 дня банит любой IP-адрес, который 5 раз пытался неудачно получить доступ к Asterisk, а потом отправляет e-mail, уведомляющий о данном факте.
img
Помимо обычной Windows, которая стоит почти на всех домашних компьютерах, есть версия с названием Windows Server, которая используется для серверов. О ней и поговорим. Windows Server - это целая линейка операционных систем, которые Microsoft специально создает для использования на серверах. Windows Server выпускается под этим названием с момента выпуска Windows Server 2003. Однако даже до этого были доступны серверные версии Windows, например, Windows NT 4.0 была доступна как для обычных домашних компьютеров, так и для серверов. Обычно каждый выпуск Windows Server соответствует обычной пользовательской версии Windows. Например, Windows Server 2003 - это серверная версия Windows XP, Windows Server 2016 основана на Windows 10 Anniversary Update, а Windows Server 2019, основана на версии Windows 10 версии 1809. С первого взгляда не поймешь, чем Windows Server отличается от обычных версий Windows - рабочий стол выглядит так же, есть значки и даже есть кнопка Пуск. Поскольку Windows Server и обычная версия имеют общую базу кода, многие вещи можно делать одинаково и там, и там, например, загружать и устанавливать программы, а многие основные функции включены в Windows Server. Однако в Windows Server не получится найти различные свистелки для пользователя - например Microsoft Store или браузер Edge. Скажем так - серверная версия Windows отлично подходит для корпоративных целей, когда компании нужно создать внутренний или внешний сервис, который будет решать конкретную бизнес задачу. Давайте теперь про основные различия: первое, что Windows Server включает в себя, это специальное корпоративное программное обеспечение, которое называется Enterprise Management Software С помощью него можно давать серверу различные роли, например: Роль Active Directory: это готовая роль, в которой сервер, сможет выступать как контроллер домена, и будет выполнять всю проверку подлинности учетных записей пользователей в компании. Роль DHCP и DNS Server: сервер может автоматически назначать IP-адреса всем устройствам в сети, и резолвить адреса. Быть файловым хранилищем: хранить важные файлы и устанавливать порядок доступа к ним. Службы печати: позволяет обеспечивать общий доступ к принтерам и сканнерам. Службы обновления Windows: можно направлять все обновления рабочей станции через этот сервер и настраивать определенные правила их работы. Веб сервер: позволяет поднимать на этом сервере сервисы, которые будут доступны для других пользователей через web-доступ. И это лишь малая часть возможных ролей в Windows Server. Очень часто кампании имеют больше одного сервера, и конечно же разделяют разные роли между ними. Еще одним важным отличие серверной Windows от пользовательской, это меньшее количество аппаратных ограничений. Например, Windows 10 позволяет юзерам устанавливать 2 ТБ оперативной памяти, что кажется и так очень много, но Windows Server предоставляет до 24 ТБ ОЗУ, потому что компаниям нужны большие мощности. Представь сервер, на котором крутятся десятки виртуальных машин! Конечно ему потребуется много оперативной памяти. А еще Windows Server может обрабатывать больше ядер и процессоров, так как имеет 64 сокета. Помнишь мы сказали, что Windows Server выглядит так же как обычный Windows? Да, но серверная Windows может вообще работать без графической оболочки! Windows Server можно установить двух формах - Server Core или Desktop Experience. Если вы отдадите предпочтение Windows Server Core без графического интерфейса, то будете наслаждаться управлением сервером через командную строку PowerShell, или сможете накатить инструмент с графическим интерфейсом, например RSAT (Remote Server Administration Tools) или Windows Admin Center. Не подумайте, это не мазохизм - это позволяет снизить нагрузку на сервер убрав “тяжелый” интерфейс. А еще многим администраторам, зачастую, удобнее работать с конмадной строке. Что выбрать под мой сервак, спросишь ты? Linux или Windows? Зависит от цели: Linux экономичнее и по деньгам, и по ресурсам, но если ты работаешь с инфраструктурой Microsoft, то тут нужно определенно выбирать Windows Server.
img
В интернете можно найти множество статей с описанием шаблонов масштабирования баз данных (БД), но, в основном, это разрозненная информация с перечислением методик и практически без объяснений. Ниже приведено подробное руководство по шаблонам масштабирования БД, пошаговым объяснением принципов их работы и примерами использования. Практический пример Предположим, вы создали стартап, который предлагает совместные поездки по дешевой цене. Вы выбрали город для поездок, а первая реклама привлекла не более 10 клиентов. Вы храните информацию обо всех клиентах, поездках, местах, бронированиях и историях заказов в одной и той же БД и, скорее всего, на одной физической машине. У вас нет навороченного кеширования или конвейера обработки больших данных, ведь ваше приложение только появилось. На данный момент это – идеальный вариант: в базе мало клиентов, и система, вряд ли, бронирует по поездке каждые 5 минут. Но время идет. В вашей системе регистрируется все больше людей, ведь это самый дешевый сервис на рынке. Да и реклама сделала свое дело. Вы получаете по 10 заказов в минуту. Постепенно это количество увеличивается до 20, а затем и 30 бронирований в минуту. В этот момент вы замечаете, что система начинает тормозить: время отклика API сильно увеличилось, а некоторые транзакции блокируются или зависают и, в конечном итоге, не проходят. Время ответа приложения также увеличилось, что вызвало недовольство клиентов. Как же решить эту проблему? Шаблон №1 – оптимизация запросов и реализация пула соединений Первое решение, которое приходит на ум: кэш слишком часто использует нединамические данные (история бронирования, история платежей, профили пользователей и т.д.). Но прикладным уровнем кеширования вы не сможете решить проблему с временем отклика API, предоставляющим динамические данные (текущее местоположение водителя, ближайшая машина для конкретного клиента, текущая стоимость поездки после выхода на маршрут и т.д.). Вы приходите к выводу, что база данных слишком нормализована, поэтому вы решаете ее немного «разбавить» и добавляете несколько избыточных столбцов (такие столбцы часто попадают в операторы WHERE или JOIN ON в запросах). Это сокращает количество запросов на соединение, разбивает большие запросы на несколько маленьких и добавляет их результаты на прикладной уровень. Можно заняться и параллельной оптимизацией – настроить подключения к базам данных. Внешние и клиентские библиотеки БД доступны практически для всех языков программирования. Для кеширования подключений к БД можно воспользоваться библиотеками пула соединений. Либо вы можете настроить размер пула соединений в самой СУБД. Создание сетевого подключения – вещь весьма затратная, поскольку требует двусторонней коммуникации между клиентом и сервером. Пулы соединений помогают оптимизировать количество подключений. Библиотеки пула соединений реализуют мультиплексирование подключений – несколько потоков приложения могут пользоваться одним и тем же подключением. Вы замеряете время отклика API и замечаете снижение задержки на 20-50% (или даже больше). На данный момент это хорошая оптимизация. Затем вы расширили бизнес на еще один город и получили больше клиентов. Постепенно вы доходите до 80-100 бронирований в минуту. Ваша система не в состоянии справиться с таким объемом. Вы вновь замечаете увеличение времени ожидания API, а слой базы данных не справляется с нагрузкой. Но в этот раз оптимизация запросов не дает вам существенного улучшения производительности. Вы проверяете метрики системы и видите, что дисковое пространство заполнено, ЦП занят в 80% времени, а ОЗУ переполняется слишком быстро. Шаблон № 2 – вертикальное масштабирование или масштабирование вверх Изучив все системные метрики, вы не находите другого решения, кроме как обновить аппаратное обеспечение системы. Вы увеличиваете размер оперативной памяти в 2 раза, а объем диска – раза в 3. Это называется вертикальным масштабированием. Вы сообщаете группе по обслуживанию инфраструктуры, команде devops или агентам сторонних центров обработки данных (ЦОД) о необходимости обновления вашей машины. Но как настроить саму машину для вертикального масштабирования? Вы выделяете машину большего объема. Один из подходов заключается в том, чтобы не переносить данные со старой машины вручную, а настроить новую машину в качестве копии, или реплики (replica), уже существующего устройства, или источника (primary), прописав временную конфигурацию первичной реплики (primary replica). После завершения репликации назначьте новую машину в качестве primary и отключите старую. Поскольку обрабатывать запросы планируется на этой новой машине, все чтение/запись также будет вестись на ней. Отлично. Вы прокачали систему, и теперь все работает намного быстрее. Ваш бизнес идет на ура, и вы решаете расшириться еще до 3 городов. Теперь вы ведете деятельность в 5 городах. Трафик увеличился втрое, вы получаете по 300 заказов в минуту. Проблема с производительностью вернулась: размер индекса сильно сказывается на памяти, базу данных необходимо постоянно поддерживать, а сканирование таблицы с индексом замедлилось до невозможности. Вы подсчитали стоимость дальнейшего масштабирования системы, но цена не внушает доверия. Так что же делать? Шаблон №3 – разделение ответственности на команды и запросы (CQRS): Вы понимаете, что та самая большая машина не в состоянии обработать все запросы на чтение/запись. Да и чаще всего компаниям нужны транзакционные возможности на запись (write), а не чтение (read). Вас даже устраивает небольшая несогласованность данных или замедление операций read. В принципе, раньше это тоже не казалось вам проблемой. Вы решаете, что неплохо было бы разделить операции чтения и записи на физической машине. Это позволит отдельным машинам выполнять больше операций чтения/записи. Теперь вы берете целых 2 большие машины и настраиваете их репликами для текущего компьютера. Репликация базы данных решит вопрос с переносом данных с primary машины на реплики. Вы перенаправляете все запросы на чтение (буква Q в CQRS, что означает «запрос» - Query) в реплики – любая реплика может обслуживать любой запрос на чтение. А все запросы на запись остаются на первичной машине. Возможна небольшая задержка в репликации, но в вашем конкретном случае это не критично. Вариант с настройкой primary-replica вполне подходит для большинства стартапов среднего масштаба, получающих по сотням тысяч запросов ежедневно… но при условии, что компании периодически архивируют старые данные. Вы вновь расширились на 2 города, и замечаете, что primary-машина не справляется со всеми запросами на запись. Многие такие запросы приходят с опозданием. Более того, задержка между primary и replica начинает сказываться на клиентах и водителях. Например, поездка завершена, клиент успешно ее оплачивает, но водитель не видит платеж, поскольку активность клиента – это запрос на запись, который идет на машину primary, а активность водителя – это запрос на чтение, который приходит на одну из реплик. Вся система настолько замедлилась, что водитель не видит платежа как минимум секунд 30, и это вызывает недовольство как со стороны клиента, так и у самого водителя. Как же поступить сейчас? Шаблон №4 – репликация с несколькими источниками Конфигурация primary-replica помогла вам успешно масштабироваться, однако теперь для операций записи не хватает возможностей. Быть может, вы согласитесь слегка пожертвовать быстротой запросов на чтение. А почему бы не перенести запросы на запись тоже в реплики? В модели с несколькими источниками (multi-primary) все машины работают как источник, и как реплика. Такая структура чем-то напоминает замкнутый круг из машин: A->B->C->D->A. «B» может реплицировать данные из «A», «C» – реплицирует данные из «В», «D» – дублирует данные из «C», а «A» делает тоже самое из «D». Вы можете выполнять операцию чтения и одновременно записывать данные в любой узел; вы можете транслировать запрос во все узлы, а значение вернет один из откликнувшихся узлов. Все узлы имеют одинаковую схему БД, один и тот же набор таблиц, индекс и т.д. Но нужно следить, чтобы в узлах одной таблицы не было конфликта по id , иначе при трансляции запросов несколько узлов вернут разные данные по одному и тому же id. Вообще считается, что для ID лучше использовать UUID или GUID. Еще один недочет данной системы: из-за трансляции запросов и поиска корректного результата, запросы на чтение могут оказаться неэффективными. Это, своего рода, принцип распределения/сборки в действии. И вот вы вновь масштабировали бизнес. В этот раз на 5 новых городов. Система не справляется. Теперь вам нужно обрабатывать по 50 запросов в секунду. Вам очень не хватает обработки большого количества параллельных запросов. Но как это сделать? Шаблон №5 – декомпозиция Вы знаете, что база данных location получает много трафика на чтение/запись. Вполне возможно, что соотношение записи к чтению составляет 7:3. Это создает большую нагрузку на существующие БД. В таблицах location содержится несколько первичных данных: долгота (longitude), широта (latitude), отметка времени (timestamp), ID водителя (driver id), ID поездки (trip id) и т.д. Там практически нет информации о поездках или данных пользователя, его платежах и т.д. Возможно, стоит разделить таблицы location на отдельную схему? Как насчет того, чтобы распределить эту БД по отдельным машинам с корректно настроенной конфигурацией primary-replica или multi-primary? Это называется декомпозицией данных по функциональности. В разных БД можно хранить данные, разделенные по функциональному признаку, а результат (при необходимости) агрегируется на серверном уровне. Такой способ позволит вам масштабировать нужный функционал с большим количеством запросов на чтение/запись. В то же время прикладной или серверный уровень приложения должен будет заняться объединением результатов, что приведет к значительному изменению кода. Теперь представьте себе, что вы масштабировались до 20 городов в своей стране и планируете открыть филиалы в Австралии. Растущий спрос на ваше приложение требует все более быстрого времени ответа. Ни один из методов выше с этим не поможет. Вам нужно масштабировать систему так, чтобы при расширении в другие страны/регионы не приходилось слишком часто проектировать и менять архитектуру. Как же тогда поступить? Шаблон №6 – горизонтальное масштабирование Вы хорошо загуглили эту тему, почитали массу статей о том, как другие компании решали такую проблему, и поняли, что настал момент масштабироваться горизонтально. Вы выделили, скажем, 50 машин – все с одинаковой схемой БД и одинаковыми наборами таблиц. На каждой машине хранится лишь часть данных. Поскольку во всех БД хранится один и тот же набор таблиц, вы можете спроектировать систему таким образом, чтобы реализовать привязку данных (то есть все связанные данные хранятся на одной машине). В каждой машине может быть своя реплика; реплики используются для восстановления после сбоя. Каждая такая база данных называется «шардом». На физической машине может быть один или несколько шардов – их количество зависит от нужной вам схемы проектирования. Вы должны придумать ключ шардирования, который бы всегда относился к одной и той же машине. Представьте себе много машин с кучей связанных данных в одном наборе таблиц; операции на чтение/запись запрашиваются для одной и той же строки или набора ресурсов на одной и той же машине с БД. Реализовать шардинг довольно сложно. По крайней мере, так говорят инженеры. Но при обслуживании миллионов или даже миллиардов запросов, рано или поздно вам придется пойти на столь непростой шаг. Настроив шардинг, вы уверены, что сможете масштабироваться во многие страны. Ваш бизнес разросся настолько, что инвесторы вынуждают вас расширяться на другие континенты. И тут опять возникают проблемы. Все то же время отклика API. Ваш сервис находится в США, и у пользователей из Вьетнама возникают трудности при бронировании. Но почему? И что же делать? Шаблон №7 – умное сегментирование центров обработки данных Ваш бизнес развивается в Америке, Южной Азии и нескольких странах Европы. Каждый день вы получаете миллионы заказов, а ваш сервер атакуют миллиарды запросов. Поздравляю! Это пиковый момент в вашей деятельности. Запросы из приложения поступают с разных континентов и проходят через сотни или даже тысячи серверов в интернете, поэтому время отклика растет. Может, распределить трафик по центрам обработки данных? Вы могли бы настроить ЦОД в Сингапуре, и он бы обрабатывал все запросы из Южной Азии. Затем сделать еще один в Германии – он займется всеми запросами из европейских стран, и оставить ЦОД в Калифорнии для обработки американских запросов. Кроме того, вам понадобится репликация между ЦОД – на случай, если потребуется восстановление после сбоя. Если центр обработки данных в Калифорнии выполняет репликацию сингапурского ЦОД, то в случае аварии в Калифорнии (стихийные бедствия, отсутствие электричества и т.д.), все запросы из США будут передаваться в Сингапур и наоборот. Такой метод масштабирования подходит для: обслуживания миллионов клиентов из разных стран, сохранения всех данных и поддержания постоянной доступности системы. Заключение В статье приведены общие методы по масштабированию базы данных. Стоит сказать, что у большинства инженеров нет достаточных возможностей для реализации всех шаблонов. Но лучше знать о существовании таких схем, которые в будущем могут помочь вам с проектированием архитектуры и систем.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59