По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Чтобы понять NoSQL, нужно разобраться, что такое SQL и почему мы говорим ему No. Итак, SQL (structured query language) расшифровывается как «язык структурированных запросов», и это язык запросов для управления данными в так называемых реляционных базах данных, или просто БД В реляционных базах мы храним данные в таблицах, которые логически связаны между собой - отсюда и название - реляционные от слова relation, связь. Это один из самых популярных типов баз. В этих таблицах есть строки и столбцы. В столбце таблицы хранится определенный тип данных, а в каждой ячейке – значение. Строка же получается как набор связанных значений, которые относятся к одному объекту - мы видим что у крыла типа чайка длина 25 метров. Ну и каждая строка в таблице может быть помечена каким то уникальным идентификатором, который называется первичным ключом (primary key). А затем при помощи него мы можем связать данные из нескольких таблиц, например в отдельной таблице, где он станет внешним ключом (foreign key). В общем, как таблица в экселе, только данные могут быть связаны. Что еще важно знать: реляционные БД требуют так называемую схему (schema) - описание структуры таблицы ее полей и ограничений. То есть если нам например нужно добавить или убрать столбец в таблице, то это изменение коснется всех данных внутри нее. Также БД этого типа соответствуют так называемым принципам ACID (Atomicity — Атомарность, Consistency — Согласованность, Isolation — Изолированность, Durability — Надёжность), что вкратце означает, что при работе с базой, целостность и согласованность данных гарантирована, даже если возникли проблемы с сетью или железом, что полезно при работе с финансами, например. В качестве примеров таких баз назовем: Microsoft SQL Server, Oracle Database, MySQL и PostgreSQL. Разобрались. Теперь вернемся к NoSQL. Это тип баз данных, которые хранят данные в отличном от реляционных таблиц формате. Они узкоспециализированны для конкретных задач и нужны для улучшения производительности, масштабируемости и удобства в работе. Базы данных "ключ-значение" (key-value) Суть в том, что мы храним данные в таком виде: у нас есть уникальный ключ, который указывает на какое-то значение. А сама база - это совокупность этих пар. Вот так просто! Причем эти данные могут быть чем угодно, числом, строкой или даже другой парой ключ-значение потому что в отличии от реляционных баз данных они не имеют предопределенной структуры данных. Многие БД такого типа хранят данные в памяти (RAM), в отличии от других баз, которые хранят данные на диске, что хоть и может ограничивать объем хранимых данных (хотя они требуют гораздо меньше памяти), но это обеспечивают просто невероятную скорость. Ну и раз это NoSQL то никаких сложных запросов, никаких связей друг с другом - мы просто записываем ключ и его значение, и получаем значение по ключу. Где их использовать? Они отлично подходят для хранения кэша или пользовательских сессий. А в качестве самого простого примера можно назвать корзину в интернет магазине - где мы храним идентификатор пользователя, и сколько товаров он положил в корзину. Самые популярные хранилки по типу “ключ - значение” это Redis, Memcached и DynamoDB. Wide-column (columnstore базы данных, БД с широкими столбцами или колоночные БД) Все также просто - берем key-value БД, и делаем так чтобы в значении мы могли хранить несколько столбцов сразу. Это позволяет удобно хранить связанную информацию. Похоже на реляционную БД, но только в отличии от нее, тут у нас нет схемы, поэтому мы можем хранить разные неструктурированные данные. Такой тип БД подойдет для хранения логов, данных с умных холодильников и чайников, а также различных аналитических приложений, где данные хранятся в большом объеме. Netflix, например, хранит в таких таблицах историю просмотров пользователя. В качестве примеров таких баз назовем Cassandra, Hbase и ClickHouse. Базы данных документов или документориентированные БД (Document DB) Подробнее про них можно прочитать в нашей отдельной статье. Если предыдущие типы NoSQL БД обычно используются для специфических задач, то эти базы уже более универсальны, и могут стать основным местом хранения информации. Здесь мы храним документы. Документ это набор нескольких пар ключ-значение, о которых мы говорили раньше, и раз это не SQL, то они неструктурированны и не требуют схему. Это значит, что мы можем легко добавлять и удалять поля в документе, в отличие от реляционных БД, где изменения затронули бы всю таблицу. Документы даже могут быть вложенными, и содержать в себе другие документы. Данные хранятся в стандартных форматах, таких как XML, YAML и JSON. Такая форма хранения идеально подходит к объектам, которые используются в приложениях. Мы буквально сразу получаем полный объект который нам нужен, а в SQL нужно сначала приложить усилия и даже сделать несколько запросов и все собрать в необходимый вид. Документы можно группировать друг с другом собирая их в коллекции, которые можно собирать в логическую иерархию, получая что-то по типу реляционных БД. Это как шкаф на работе - в один ящик мы можем положить трудовые договоры, в другой - договоры с партнерами, а в третий договоры аренды. Ничто нам не мешает сложить всё в одну кучу, но так удобнее. И вот эти ящики как раз и будут коллекциями в нашем случае. А отсутствие схемы позволяет нам положить в один ящик договоры, которые схожи логически, но имеют разную структуру внутри. Например, долгосрочный договор с сотрудником и договор с компанией. Коллекции есть не у всех БД такого типа, некоторые системы используют теги или древовидные иерархии. Они часто используются для мобильных приложений и игр, блогов, интернет магазинов и всяких штук где у нас имеется много контента. Самые популярные БД такого типа - MongoDB, Amazon DynamoDB, CouchDB. Графовые БД (Graph DB) Тут мы больше значения уделяем тому как данные связаны друг с другом, и эта БД лучше всего обрабатывает такие данные. Тут у нас есть узлы, которые представляют данные и ребра (или соединения), которые описывают связь между этими данными. Помните как в реляционных базах мы записывали связь в отдельной таблице? Тут мы можем обойтись без нее, просто показав связь. Такие базы просто необходимы для алгоритмов рекомендаций, социальных сетей, управления компьютерными сетями и маршрутизацией или даже обнаружения финансового мошенничества. Самые популярные графовые базы: Neo4j и DGraph Поисковые БД (Search-engine database) Они, как понятно из названия, нужны для поиска данных из большого количества источников. Работают они примерно также как и базы данных документов - мы добавляем документы с текстом внутри, а БД проанализирует весь текст в этих документах и создаст индексы для этого текста. По сути это работает как указатели, которые ты видел в конце книги, где указывается какой-то термин и страница на которой он встречается. И когда пользователь выполняет поиск, то сканируются только эти индексы, а не все документы в базе. Ну и очевидно что они используются в качестве полнотекстового поиска, а также для хранения и анализа логов. Примеры - Elasticsearch, Solr, Algolia Базы данных временных рядов (Time series database) Это базы данных, оптимизированные для данных с отметками времени. Такое используется, для мониторинга систем, где мы храним значение времени и данные в этот момент. Например, загрузка сервера или количество подключений. Примеры - InfluxDB и Prometheus Многомодульные БД (multi-model) Также существуют так называемые много-модульные БД (multi-model), которые поддерживают несколько моделей данных. Например тот же рredis умеет и в ключ-значение, и документы с графами и даже временные данные обработает.
img
Анализ телеметрических системТелеметрия это программный комплекс для автоматической записи и передачи данных из удаленных или недоступных источников в другую систему для мониторинга и анализа. Данные телеметрии могут передаваться с использованием радиосигнала, GSM, спутникового или кабельного телевидения, в зависимости от системы. > В мире разработки программного обеспечения телеметрия может дать представление о том, какие функции конечные пользователи используют чаще всего, обнаруживать ошибки и проблемы, а также предлагать лучшую информацию о производительности без необходимости запрашивать обратную связь непосредственно от пользователей. Как работает телеметрия? В общем смысле телеметрия работает через датчики на удаленном источнике, которые измеряют физические или электрические данные. Это преобразуется в электрические напряжения, которые объединяются с данными синхронизации. Они формируют поток данных, который передается по беспроводной среде, проводной или их комбинации. На удаленном приемнике поток дезагрегируется, и исходные данные отображаются или обрабатываются в соответствии со спецификациями пользователя. В контексте разработки программного обеспечения понятие телеметрии часто путают с регистрацией. Но ведение журнала это инструмент, используемый в процессе разработки для диагностики ошибок и потоков кода, и он ориентирован на внутреннюю структуру веб-сайта, приложения или другого проекта разработки. Телеметрия это то, что позволяет собирать поток данных с устройств, которые становятся основой для анализа. Основные свойства телеметрии Основным свойством телеметрии является способность конечного пользователя контролировать состояние объекта или окружающей среды, находясь вдали от него. Поскольку телеметрия дает представление о том, насколько хорошо работает система для конечных пользователей, как её используют это невероятно ценный инструмент для постоянного мониторинга и управления производительностью. Телеметрия помогает понять: Какими функциями чаще пользуются пользователи; Как они взаимодействуют с системой; Как часто взаимодействуют с системой и в течение какого времени; Какие параметры настройки пользователи выбирают чаще всего; Какие предпочитают они определенные типы дисплея, способы ввода, ориентацию экрана или другие конфигурации устройства; Как себя ведут во время сбоя. Очевидно, что телеметрия, имеет неоценимое значение для процесса разработки. Она позволяет постоянно совершенствовать и вводить новые функции. Проблемы телеметрии Телеметрия, безусловно, фантастическая технология, но она не без проблем. Наиболее значимая проблема и часто встречающаяся - связана не с самой телеметрией, а с конечными пользователями и их готовностью разрешить то, что они считают утечкой данных. Для решения данной проблемы, некоторые пользователи сразу же отключают передачу данных. Это проблема пока не имеет четкого решения, но и не мешает развитию системы дальше. Методы защиты телеметрических данных Большие утечки данных являются большой проблемой не только для нашей странны, но и для всего мира. Несмотря на это многие не заботятся о защите, например, из-за нехватки средств для киберзащиты. Для повышения безопасности данных, нужно сделать всё, чтобы хакеры не получили информацию. Рассмотрим основные методы защиты данных. Требования к паролю Надежная политика паролей это передовая линия защиты финансовых транзакций, личных сообщений и личной информации. Для конечных пользователей использование надежного пароля на работе так же важно, как и дома, это некий личный телохранитель, который защищает от всего, что у него есть, от серьезных угроз безопасности, мошенников и хакеров. Именно тогда системный администратор приходит, чтобы убедиться в наличии надлежащих правил и политик, которые помогут вам облегчить эту нагрузку. Большинство пользователей понимают природу рисков безопасности, связанных с легко угадываемыми паролями, но разочаровываются, сталкиваясь с незнакомыми критериями или пытаясь запомнить 30 разных паролей для своих учетных записей. Вот почему системные администраторы играют важную роль в обеспечении того, чтобы каждый пользователь хорошо знал о рисках безопасности, с которыми они сталкиваются каждый день. Для этого им нужны надежные политики паролей. Политики паролей это набор правил, которые были созданы для повышения безопасности компьютера, побуждая пользователей создавать надежные и безопасные пароли, а затем хранить и правильно их использовать. Основные аспекты политики паролей: Применение политики историй паролей; Политика минимального срока действия пароля; Политика максимального срока действия пароля; Политика минимальной длины пароля; Пароли должны соответствовать требованиям политики сложности; Политика аудита паролей. Несмотря на это надежного пароля недостаточно для сохранения данных в безопасности. Двухфакторная аутентификация Двухфакторная аутентификация это дополнительный уровень безопасности, используемый для того, чтобы люди, пытающиеся получить доступ к онлайн-аккаунту, подтверждали, что они действительно являются тем, за кого они себя выдают. Сначала пользователь вводит свое имя пользователя и пароль. Затем, вместо немедленного получения доступа, они должны будут предоставить другую часть информации. С двухфакторной аутентификацией надежнее так, как только один из факторов не разблокирует аккаунт. Таким образом, даже если пароль украден или телефон утерян, вероятность того, что кто-то другой получит второстепенные данные, крайне мала. Шифрование данных на устройствах Шифрование данных на устройства это не универсальное решение для защиты всех данных и информации от посторонних глаз, особенно когда данные отправляются через Интернет. Вместо этого устройство шифрования преобразует все данные, хранящиеся на телефоне, в форму, которую можно прочитать только с правильными учетными данными. Это выходит за рамки обычного пароля экрана блокировки, так как данные могут быть доступны из-за этого экрана с некоторыми специальными знаниями и использованием восстановления, загрузчиков. После шифрования музыка, фотографии, приложения и данные учетной записи не могут быть прочитаны без предварительного разделения информации с использованием уникального ключа. За кулисами происходит немало вещей, где пароль пользователя преобразуется в ключ, который хранится в "среде надежного выполнения", чтобы защитить его от программных атак. Затем этот ключ необходим для шифрования и дешифрования файлов, вроде тех алфавитных шифровальных головоломок, которые шифруют буквы. Например, с Android это очень просто. Вы просто вводите свой пароль при загрузке или разблокировке устройства, и все ваши файлы будут доступны. Это означает, что, если ваш телефон попадет в чужие руки, никто другой не сможет разобраться в каких-либо данных на вашем телефоне, не зная вашего пароля. Шифрование сетевого трафика внутри системы Шифрование сетевого трафика обеспечивает защиту данных от перехвата злоумышленником, который отслеживает сетевой трафик. Использование шифрования для защиты сетевого трафика, проходящего через Интернет, широко распространено, обычно в форме соединений SSL/TLS. Но внутри центров обработки данных связь между серверами часто не шифруется. Злоумышленник, который получает доступ к такой сети, даже не имея доступа к серверам, на которых хранятся данные, может перехватывать защищенные данные при передаче между серверами в кластере с несколькими машинами. Кроме того, организации все чаще регистрируют и анализируют собственный сетевой трафик для обнаружения сетевых вторжений. В результате полные копии сетевого трафика могут храниться в течение длительного периода времени в этих системах мониторинга. Для всех сетевых ссылок, которые перемещают защищенные данные, важно использовать шифрование. Это относится не только к соединениям, созданным авторизованными пользователями для доступа к системе извне центра обработки данных, но также и к сетевым соединениям между узлами во много серверной системе. На практике это почти всегда требует SSL/TLS или аналогичного уровня VPN между пользователями и системой. Внутри самой системы связь может быть защищена с использованием SSL/TLS, IPSec или какой-либо другой технологии VPN типа "точка-точка". Создание процессов для удаленного доступа Если сотрудник покидает компанию, необходимо удалить его как пользователя в учетных записях компании. Ограниченный доступ для администратора Нельзя попадаться в ловушку предоставления каждому сотруднику доступа администратора. Сотрудники с правами администратора могут заблокировать сайт, банковский счет, страницы в социальных сетях и многое другое. Кроме того, они могут удалять пользователей в приложениях, которые необходимы. Нужно присвоить статус редактора и участника нескольким людям, но сохранить статус администратора для себя и доверенного члена команды. Резервное копирование и обновление Необходимо сохранять резервную копию данных на случай кражи компьютера или телефона. Однако не всегда целью воровства является, в том числе и удаление данных. Вредоносные программы, вирусы и сбои системы могут стереть данные, поэтому обновления программного обеспечения так же важны. У обновленных систем есть шанс избежать угроз безопасности. Анализ защиты информации от несанкционированного доступа Ключевой процедурой во время разработки любой информационной системы является, прежде всего, регулирование разрешенного доступа к данным и их использования. Без контроля несанкционированного доступа построение режима защиты конфиденциальности для авторизованных пользователей является спорным, потому что любая защита, которую можно легко обойти, не является истинной защитой. Реализация конфиденциальности и безопасности связана с защитой от различных угроз, такие как: шифрование, аудит, ведение журнала, контроль доступа, разделение ролей, оповещение и активный мониторинг. Сама архитектура - это совокупность вещей, образующих единое целое с желаемыми свойствами, и желаемые свойства для защиты конфиденциальности и защиты от несанкционированного доступа не являются одинаковыми для всех информационных систем. Каждая система требует индивидуальный подход. Требования безопасности могут иметь огромное влияние на каждый аспект разработки системы. Архитектура данных, возможность совместного размещения служб на одной машине, производительность системы и даже бюджеты аппаратного обеспечения могут существенно зависеть от требований безопасности. Существуют различные методы обеспечения информационной безопасности высокого уровня, которые могли бы применяться на каждом предприятии, однако существует проблема дороговизны передовых методов защиты информации, при том что не каждое предприятие может это себе позволить, либо предлагаемые меры защиты избыточны. Для таких случаев, когда затраты должны быть минимальными (low cost projects), но при этом необходимо обеспечивать надежность хранимых данных, приходят на помощь другие технологии, например, технология Tangle. Она является открытой для использования и не требует вложений на реализацию, что позволяет организовать надежное, распределенное хранилище данных доступное большинству пользователей. Таким образом, должны быть четкие представление о некоторых основных технических и юридических аспектах в сфере конфиденциальности. В этом контексте рациональные методы сбора данных и обеспечения информационной безопасности являются необходимыми основаниями для создания конкретных механизмов контроля соблюдения конфиденциальности. Понимая свои данные, вы можете понять, какие силы работают над ними и как защитить их соответствующим образом. Не менее важным являются сертифицированные средства защиты информации. Выбор сертифицированного средства защиты информации зависит от вида информационной системы, а также от класса её защищенности и должен проводиться по результатам аудита информационной безопасности информационной системы предприятия. Таким образом, должны быть четкие представление о некоторых основных технических и юридических аспектах в сфере конфиденциальности. Рациональные методы сбора данных и обеспечения информационной безопасности являются необходимыми основаниями для создания конкретных механизмов контроля за соблюдением конфиденциальности. Понимая свои данные, вы можете понять, какие силы работают над ними и как защитить их соответствующим образом. Технология IOTA Одной из наиболее популярных технологий на сегодняшний день, является технология Blockchain. Это можно считать революцией в цифровом мире. Blockchain используется в качестве цифровой книги для записи финансовых транзакций или данных, которые имеют ценность по своей природе. Это очень неизменная и безопасная система. Blockchain доказал свои возможности в технологическом и финансовом отношении, но он обладает недостатками с точки зрения масштабируемости. Потребности отрасли растут очень быстро, но платформа Blockchain не готова к обработке большого количества транзакций одновременно. Таким образом, чтобы решить эту проблему масштабирования и облегчить решение проблем безопасности, нужна новая платформа, и вот тут-то и появляется IOTA. IOTA - криптовалюта, появившаяся в конце 2015 года, и она направлена на решение основных проблем Blockchain. Проще говоря, в технологии Blockchain не может расширяться дальше и не может обрабатывать больше транзакций, чем текущий предел в семь операций в секунду. Новая технология IOTA решает эти проблемы и предлагает совершенно новую технологию, которая все еще децентрализована, но может обрабатывать и бесконечное количество транзакций. IOTA это технология, которая представляет эволюционно новый уровень транзакционных расчётов и передачи данных. Распределенный цифровой регистр, или криптографический токен, специально созданный и разработанный для Интернета вещей. Работа IOTA основана на технологии путаницы. Tangle это другое название для описания направленного ациклического графа IOTA (DAG). Это уровень интеграции данных и расчета транзакций, разработанный для сосредоточения на Интернете вещей (IOT). Tangle действует как строка отдельных транзакций, которые связаны между собой и хранятся в децентрализованном сетевом узле участников. Основным мотивом технологии путаницы является разработка масштабируемых сред для выполнения транзакций, связанных с IoT. Как работает технология? Чтобы иметь четкое представление о том, как работает клубок, рассмотрим ориентированный граф. Направленный граф представляет собой совокупность квадратных прямоугольников, соединенных ребрами с помощью стрелок. Нижеприведенный рисунок 1 является примером ориентированного графа. Известно, что криптовалюта IOTA работает в системе Tangle, которая представляет собой подобный вид ориентированного графа, который содержит транзакции. Каждая транзакция отображается в виде вершины на графике. Всякий раз, когда новая транзакция присоединяется к путанице, она выбирает две предыдущие транзакции для утверждения и добавляет два ребра в сеть. Чтобы преодолеть проблему злонамеренных атак на сеть, фонд IOTA разработал процесс под названием "Координатор". Координатор действует как механизм добровольного и временного консенсуса для Tangle. Координатор выступает в роли эмитента этапа на каждые 2 минуты транзакции на путанице, и транзакции, одобренные координатором, рассматриваются на предмет подтверждения 100% уверенности. Если количество транзакций IoT уменьшится, они не будут уязвимы для атак. Следовательно, сеть продолжает расширяться, и тогда роль координатора будет уничтожена. Таким образом, Tangle становится полностью децентрализованной сетью и защищен с помощью полностью распределенного консенсусного механизма с использованием монеты памяти через DAG. Особенности технологии Tangle Это направленный ациклический граф (DAG); Это сеть с начальными блоками; Каждая сеть состоит из разных узлов, которые работают углубленно; Каждый узел имеет свой вес; Безграничная масштабируемость и рост данных; Менее подвержен атакам и взломам. Tangle против Blockchain Несмотря на то, что Blockchain и Tangle являются схожими технологиями, между этими двумя технологиями имеется немного технических вариаций. Техническое различие между Blockchain и Tangle или уникальными особенностями Tangle сделало его пригодным для IoT. Существенные различия между Blockchain и Tangle: Структура Структура Blockchain состоит из серии блоков или узлов информации, в которой каждый последующий блок связан с его предыдущим в постоянно растущей длинной цепочке. Когда речь идет о технологии Tangle, она состоит из группы узлов данных, которые движутся в одном направлении. Blockchain обладает возможностью циклического возврата транзакций назад, тогда как в Tangle он никогда не проверяет предшествующие узлы и позволяет Tangle поддерживать огромное количество транзакций. Визуализация вышеописанного представлена на рисунке 1. Безопасность Blockchain приобрел популярность с точки зрения безопасности из-за сложности формирования блоков. Формирование блока, связанного с математическим решением и процессом верификации, требует консенсуса. Tangle требует только проверки двух предыдущих узлов перед проверкой нового, и таким образом он создает новый узел. Вот как Tangle отстает безопаснее по сравнению с Blockchain. Децентрализация Blockchain и Tangle, обе технологии работают на децентрализованных системах, что означает отсутствие каких-либо других вещей, таких как интерфейс, сборы, препятствия и т.д. Технологию Tangle иногда называют "Blockchain следующего поколения". Несмотря на такие заблуждения, как его реализация, долгосрочная устойчивость и потенциальность, Tangle остается одной из лучших технологий в мире криптовалют. С годами применение IoT-устройств растет, и Tangle может справиться с увеличением количества транзакций. Известные уязвимости в системах Интернета вещей Некоторые уязвимости, с которыми сталкиваются системы Интернета вещей: Отсутствие безопасности транспортного уровня: в большинстве систем Интернета вещей данные хранятся на облачных серверах в интернете, мобильных телефонах или онлайн-базах данных. Эти данные можно легко взломать, так как они не шифруются при передаче. Что повышает риск безопасности данных в системе Интернета вещей. Неадекватные функции безопасности: в условиях растущей конкуренции и огромного спроса технологические гиганты хотят как можно скорее запустить свою программную систему IoT. Таким образом, важная часть жизненного цикла программного обеспечения, такая как тестирование, обеспечение качества и уязвимости безопасности, не выполняется должным образом. Плохая безопасность мобильных устройств: плохая безопасность мобильных устройств в системах Интернета вещей делает их более уязвимыми и рискованными. Данные хранятся в очень небезопасном виде в мобильных устройствах. Однако устройства iOS более безопасны, чем устройства на Android. Если пользователь потеряет свой смартфон и данные не будут сохранены, он будет в большой беде. Хранение данных на облачных серверах: хранение данных на облачных серверах также рассматривается как слабое звено в безопасности систем Интернета вещей. Облачные серверы имеют меньшую безопасность и открыты для злоумышленников из всех измерений. Разработчики должны убедиться, что данные, хранящиеся на облачных серверах, всегда должны быть в зашифрованном формате. Сетевые атаки: еще одной большой уязвимостью в системах Интернета вещей является беспроводное соединение, которое открыто для злоумышленников. Например, хакеры могут заблокировать функциональность шлюза в системах Интернета вещей. Это может разрушить всю систему IoT. IoT является одним из самых интересных и новейших технологий в наши дни. Интернет вещей используется для определения сети, которая состоит из ряда электронных устройств, соединенных между собой с помощью смарт-технологии. Умные города, умные автомобили, умные бытовые приборы будут следующей большой вещью, которая произведет революцию в том, как происходит жизнь, работа и взаимодействие людей. Как известно, каждая монета имеет две стороны. Аналогичным образом, IoT также имеет некоторые риски и уязвимости. Преодолевая эти угрозы, появится возможность пользоваться услугами систем Интернета вещей.
img
Многим организациям необходимо предоставлять и поддерживать большое количество удаленных офисов. Например: Розничные сети могут иметь сотни или даже тысячи магазинов по всему миру. Региональный банк может иметь сотни отделений и тысячи банкоматов. Когда поставщики услуг фиксированной частной телефонной связи предлагали свои услуги в любом масштабе, такого рода проблемы решались с помощью large-scale и hub-and-spoke сетей. На рисунке показана hub-and-spoke сеть. Сеть, показанная на рисунке выше, на самом деле довольно мала: три узла в центре удаленных сайтов могут представлять сотни или тысячи дополнительных узлов. Во многих реализациях (особенно старых) каналы связи между двумя маршрутизаторами-концентраторами, A и B, и удаленными устройствами, такими как C и N, являются двухточечными. Это означает, что на концентраторе-маршрутизаторе должен быть настроен интерфейс для каждого удаленного маршрутизатора, фильтры маршрутизации, фильтры пакетов и любые конфигурации Quality of Service. Это не только серьезная проблема с точки зрения конфигурации, но также трудно поддерживать тысячи отдельных соседей с точки зрения использования процессора и памяти. Чтобы уменьшить объем вычислительной мощности, необходимой для обслуживания такой сети, протоколы были изменены, чтобы исключить обработку удаленных узлов, как если бы они были частью дерева. Вместо этого, эти модификации позволили рассматривать эти удаленные узлы, как если бы они были выходными или тупиковыми сетями. Еще одним шагом на пути к упрощению создания таких сетей и управления ими было использование интерфейса point-to-multipoint (с соответствующей базовой технологией, такой как Frame Relay) на концентраторах-маршрутизаторах. Когда соединения с удаленными узлами настроены как point-to-multipoint, концентраторы-маршрутизаторы A и B обрабатывают все периферийные устройства так, как если бы они находились в одном сегменте широковещательной передачи (фактически, как сегмент Ethernet). Однако каждый spoke маршрутизатор по-прежнему рассматривает свое соединение с маршрутизаторами-концентраторами как соединение point-to-point. Даже с этими модификациями создание и обслуживание таких больших сетей все еще очень сложно. Необходимо проложить каналы на каждый удаленный узел и управлять ими, необходимо настроить удаленное оборудование и управлять им, необходимо управлять конфигурацией маршрутизаторов-концентраторов и т. д. Программно-определяемые глобальные сети (SD-WAN) изначально были разработаны для решения этой конкретной задачи. Идея DMVPN, зародившаяся в Dynamic Multipoint Virtual Private Network (DMVPN) от Cisco, заключалась в использовании туннелируемой оверлейной сети, работающей поверх общедоступного Интернета. Это позволило удаленным узлам использовать локально доступное подключение к Интернету, а не покупать канал для каждого узла, а также сократить время настройки и обслуживания за счет автоконфигурации и других инструментов. SD-WAN - это еще один шаг вперед в концепции сети over-the-top. Решение SDWAN обычно строится с использованием нескольких компонентов: Специализированное устройство или виртуализированная служба для замены маршрутизаторов, обычно размещаемых в центральных и оконечных точках. Модифицированная версия стандартного протокола маршрутизации для обеспечения доступности (и, возможно, одного из показателей жизнеспособности цепи) и передачи политик по сети. Реализация либо IP-безопасности (IPsec), либо безопасности транспортного уровня (TLS) для обеспечения безопасной туннельной передачи между оконечными устройствами. Контроллер для мониторинга состояния каждого виртуального канала, приложений, использующих канал, и количества полезной пропускной способности по сравнению с объемом трафика, а также для динамической корректировки потока трафика и параметров QoS для оптимизации работы приложений в over-the-top сети виртуальной сети. Есть много разных способов реализации SD-WAN, например: SD-WAN может заменить "последнюю милю". Вместо того чтобы устанавливать схему на каждом удаленном узле, вы можете использовать решения SD-WAN для достижения точки обмена или коллокации, а затем передавать трафик через более традиционную службу через провайдера обратно к маршрутизаторам-концентраторам (это форма backhaul). SD-WAN может заменить весь путь от сети организации до удаленных узлов. SD-WAN можно использовать для привлечения трафика в облачную службу, где может быть выполнена некоторая предварительная обработка или развернуты некоторые приложения, причем только трафик, который должен быть перенесен в сеть организации, переносится остальная часть пути в маршрутизаторы-концентраторы. Существуют компромиссы с SD-WAN и другими передовыми решениями, как и с любой другой сетевой технологией. Например, передача трафика корпоративного удаленного узла через "обычное" публичное интернет-соединение (или пару услуг, или какую-то другую услугу, завершенную Ethernet) может быть "достаточно хорошей" в некоторых ситуациях, но провайдеры, как правило, лучше относятся к трафику в более дорогих услугах (что вполне естественно), особенно при отключениях.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59