По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитатей первую часть статьи про траблшутинг NAT/PAT на Cisco. В этой части мы рассмотрим проблемы DHCP. Урок 1 Вот новый сценарий, позвольте мне сначала объяснить его: Зеленая зона - это наша локальная сеть, так что это наш NAT inside. Красная область - это Интернет, поэтому это наш NAT outside. Предполагается, что хост - это компьютер с шлюзом по умолчанию 192.168.12.2. Наш маршрутизатор NAT подключен к маршрутизатору ISP. Маршрутизатор ISP назначил нам подсеть 172.16.1.0 / 24, которую мы собираемся использовать для трансляции NAT. BGP был настроен между NAT и маршрутизатором ISP для доступа к сети 192.168.34.0/24. Предполагается, что веб-сервер прослушивает TCP-порт 80 и использует 192.168.34.3 в качестве шлюза по умолчанию. Однако пользователи нашей локальной сети жалуются на то, что не могут подключиться к веб-серверу. Давайте проверим нашу конфигурацию NAT: Мы можем убедиться, что трансляция работает: Inside local IP-адрес нашего хоста. Inside global находится один из IP-адресов из нашей подсети 172.16.1.0/24. Outside local and global IP-адрес нашего веб-сервера Эта трансляция выглядит хорошо, потому что все IP-адреса верные. Мы видим, что маршрутизатор NAT научился достигать сети 192.168.34.0 / 24 через BGP. Наш NAT-маршрутизатор может подключаться к веб-серверу, поэтому проблема с подключением отсутствует. Однако следует помнить одну важную вещь. Пакет IP, который производит маршрутизатор NAT, выглядит следующим образом: IP-адрес получателя является нашим веб-сервером, и с ним нет проблем. Исходный IP-адрес - 192.168.23.2, и поскольку мы получили ответ, мы знаем, что маршрутизатор ISP знает, как достичь подсети 192.168.23.0 / 24. Это важно, поскольку подсеть 192.168.23.0 / 24 напрямую подключена к маршрутизатору ISP. Однако, если мы отправляем эхо-запрос с хост-устройства, он преобразуется из-за NAT в IP-адрес в подсети 172.16.1.0/24. Пакет IP будет выглядеть так: Вот что происходит, когда этот IP-пакет покидает маршрутизатор NAT и отправляется маршрутизатору ISP: Маршрутизатор ISP получает IP-пакет и проверяет свою таблицу маршрутизации, знает ли он, куда отправлять трафик для сети 192.168.34.0 / 24. Сеть 192.168.34.0/24 напрямую подключена к маршрутизатору ISP, поэтому она выполняет запрос ARP для MAC-адреса веб-сервера, получает ответ ARP и может пересылать IP-пакет на веб-сервер. Веб-сервер хочет ответить, и он создает новый IP-пакет с IP-адресом назначения 172.16.1. Поскольку веб-сервер имеет маршрутизатор ISP в качестве шлюза по умолчанию, он отправит IP-пакет маршрутизатору ISP. Маршрутизатор ISP должен выполнить поиск в таблице маршрутизации, чтобы узнать, знает ли он, где находится сеть 172.16.1.0 / 24. Маршрутизатор ISP не знает, где находится 172.16.1.0 / 24, и отбросит IP-пакет. Если бы это была настоящая производственная сеть, у нас не было бы доступа к маршрутизатору ISP. Так как это эмуляция сети и устройств, к которой у нас есть доступ, поэтому давайте сделаем отладку! ISP#debug ip packet 1 IP packet debugging is on for access list 1 ISP#conf t ISP(config)#access-list 1 permit host 192.168.34.4 Сначала включим отладку IP-пакетов и используем список доступа, который соответствует IP-адресу веб-сервера. Следующим шагом является то, что мы будем генерировать некоторый трафик с хост-устройства. Это то, что будет производить маршрутизатор ISP. Он говорит нам, что понятия не имеет, куда отправить IP-пакет для 172.16.1.1 to...it является не маршрутизируемым и будет отброшен. Так как же мы решим эту проблему? ISP-маршрутизатор требует сеть 172.16.1.0 /24 в таблице маршрутизации. Поскольку мы уже запустили BGP мы можем использовать его для объявления этой сети с нашего маршрутизатора NAT: NAT(config)#ip route 172.16.1.0 255.255.255.0 null 0 NAT(config)#router bgp 1 NAT(config-router)#network 172.16.1.0 mask 255.255.255.0 Сначала мы создадим статическое правило, которое указывает сеть 172.16.1.0 / 24 на интерфейс null0. Мы делаю это потому, что невозможно объявлять то, чего у тебя нет. Следующий шаг-объявить эту сеть в BGP. Пинг прошел проблема решена! Итог урока: убедитесь, что ваши маршрутизаторы знают, как связаться с translated сетями. Урок 2 Начнем с простого сценария. Маршрутизатор с левой стороны - это наш DHCP-клиент, а маршрутизатор с правой стороны - это наш DHCP-сервер. Клиент, однако, не получает никаких IP-адресов ... что может быть не так? Сначала мы проверим, включен ли интерфейс на клиенте DHCP и настроен ли он для DHCP. И это действительно так. Мы также должны убедиться, что интерфейс на сервере DHCP включен/включен и что у него есть IP-адрес. Пока все выглядит хорошо... Если мы хотим быть абсолютно уверенным, что проблема не в клиенте, нам надо применить отладку командой debug dhcp detail, чтобы посмотреть, отправляет ли клиент DHCP сообщения об обнаружении DHCP. Мы видим некоторые отладочные выходные данные, как показано выше. Это говорит о том, что наш DHCP-клиент отправляет сообщения DHCP Discover. Клиент, скорее всего, не является источником этой проблемы. DHCPServer#show ip dhcp pool Мы будем использовать команду show ip dhcp pool, чтобы проверить, существует ли пул DHCP. Вы видите, что у нас есть пул DHCP с именем "MYPOOL", и он настроен для подсети 192.168.12.0 / 24. Пока все выглядит хорошо. Мы можем использовать команду show ip dhcp server statistics, чтобы узнать, что делает сервер DHCP. Вы видите, что он ничего не делает ... что это может значить? Эта команда не часто применяется. show ip sockets показывает нам, на каких портах роутер слушает. Как вы видите, он не прослушивает никакие порты ... если мы не видим здесь порт 67 (DHCP), это означает, что служба DHCP отключена. DHCPServer(config)#service dhcp Включим сервис. Так-то лучше! Теперь мы видим, что маршрутизатор прослушивает порт 67, это означает, что служба DHCP активна. Как только служба DHCP будет запущена, вы увидите, что клиент получает IP-адрес через DHCP ... проблема решена! Итог урока: если все в порядке, убедитесь, что служба DHCP работает. Урок 3 Взгляните на сценарий выше. У нас есть 3 маршрутизатора; маршрутизатор на левой стороне настроен как DHCP-клиент для своего интерфейса FastEthernet0/0. Маршрутизатор с правой стороны настроен как DHCP-сервер. Помните, что DHCP-сообщения об обнаружении от клиентов транслируются, а не пересылаются маршрутизаторами. Вот почему нам требуется команда ip helper на маршрутизаторе в середине, именуемым как relay. Проблема в этом сценарии заключается в том, что клиент не получает IP-адреса через DHCP Сначала мы проверим, что интерфейс настроен для DHCP. Мы определим это с помощью команды show ip interface brief. DHCPClient(config)#interface fastEthernet 0/0 DHCPClient(config-if)#shutdown DHCPClient(config-if)#no shutdown Мы будем переводить интерфейс в режимы up и down для проверки, будет ли он отправлять сообщение DHCP Discover. Мы видим, что сообщения DHCP Discover принимаются на DHCP-сервере. Это означает, что маршрутизатор в середине был настроен с IP helper, в противном случае мы даже не получили бы эти сообщения. Сообщения с предложениями DHCP отправлены, но мы не видим сообщений DHCPACK (Acknowledgment). Это дает нам понять, что что-то происходит... DHCPServer#debug ip dhcp server packet Включим отладку, чтобы увидеть, что происходит. Мы видим, что наш DHCP-сервер пытается достичь IP-адреса 192.168.12.2, это интерфейс FastEthernet0/0 нашего маршрутизатора в середине. Знает ли DHCP-сервер, как добраться до этого IP-адреса? Как вы можете видеть, его нет в таблице маршрутизации, это означает, что IP-пакеты с назначением 192.168.12.2 будут отброшены. Чтобы доказать это, мы можем включить отладку Здесь видим, что IP-адрес назначения 192.168.12.2 не является маршрутизируемым, и в результате IP-пакет будет отброшен. Давайте исправим эту проблему. DHCPServer(config)#ip route 192.168.12.0 255.255.255.0 192.168.23.2 Мы добавим этот статический маршрут, чтобы исправить нашу проблему с подключением. Через некоторое время вы должны увидеть, что клиент получает IP-адрес через DHCP. Если вы оставили "debug ip dhcp server packet" включенным, вы увидите весь процесс DHCP: DHCP Discover DHCP Offer DHCP Request DHCP ACK Вот и все ... проблема решена! Итог урока: если вы используете IP helper, убедитесь, что DHCP-сервер знает, как связаться с подсетью, в которой находится клиент. 3 часть статьи про FHRP траблшутинг на Cisco доступна по ссылке.
img
Теперь мы можем продолжить поиск и устранение неисправностей. В большинстве случаев вы ожидаете увидеть определенную сеть в таблице маршрутизации, но ее там нет. Далее рассмотрим несколько сценариев неправильной (или полностью не рабочей) работы EIGRP и как исправить наиболее распространенные ошибки. Ниже перечислены часто встречающиеся ошибки: Первую часть статьи про траблшутинг EIGRP можно почитать здесь. Кто-то настроил distribute-list, чтобы информация о маршрутах фильтровалась. Было настроено автосуммирование или кто-то настроил суммирование вручную Split-horizon блокирует объявление маршрутной информации. Перераспределение было настроено, но информация из EIGRP не используется. Перераспределение было настроено, но никакие внешние маршруты EIGRP не отображаются. Case #1 Давайте начнем с простой топологии. OFF1 и OFF2 работают под управлением EIGRP, и каждый маршрутизатор имеет интерфейс обратной связи. Вот конфигурация обоих маршрутизаторов: OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary OFF1(config-router)#network 1.1.1.0 0.0.0.255 OFF1(config-router)#network 192.168.12.0 0.0.0.255 OFF2(config)#router eigrp 12 OFF2(config-router)#no auto-summary OFF2(config-router)#network 2.2.2.0 0.0.0.255 OFF2(config-router)#network 192.168.12.0 0.0.0.255 Все работает нормально, пока через пару недель один из пользователей не пожаловался на то, что ему не удалось подключиться к сети 2.2.2.0 / 24 из-за OFF1. Посмотрите на таблицу маршрутизации на OFF1, и вот что вы видите: По какой-то причине нет сети 2.2.2.0 / 24 в таблице маршрутизации. Видно, что на OFF1 не настроен distribute lists. OFF2 содержит сеть 1.1.1.0 / 24 в своей таблице маршрутизации. Давайте выполним быструю отладку, чтобы увидеть, что происходит. Отладка показывает нам, что происходит. Прежде чем вы увидите это сообщение, придется немного подождать, или вы можете сбросить соседство EIGRP, чтобы ускорить процесс. Как видите, в сети 2.2.2.0 / 24 отказано из-за distribute list. Другой быстрый способ проверить это - использовать команду show ip protocol. В этом случае использование show run могло бы быстрее обнаружить distribute-list. Вот список доступа, доставляющий нам неприятности. OFF2(config)#router eigrp 12 OFF2(config-router)#no distribute-list 1 out Удалим distribute-list. Задача решена! Извлеченный урок: если команды network верны, проверьте, есть ли у вас distribute-list, который запрещает объявлять префиксы или устанавливать их в таблицу маршрутизации. Имейте в виду, distribute-list могут быть настроены как входящие или исходящие, как список доступа. Case #2 В следующем сценарии те же 2 маршрутизатора, но разные сети в loopback. Вот конфигурация: OFF1(config)#router eigrp 12 OFF1(config-router)#network 192.168.12.0 OFF1(config-router)#network 10.0.0.0 OFF2(config)#router eigrp 12 OFF2(config-router)#network 192.168.12.0 OFF2(config-router)#network 10.0.0.0 Как вы видите - это довольно базовая конфигурация. Глядя на таблицы маршрутизации, не видно сети 10.1.1.0 / 24 или 10.2.2.0 / 24. Видна запись для сети 10.0.0.0/8, указывающую на интерфейс null0. Эта запись отображается только при настройке суммирования и используется для предотвращения циклов маршрутизации. Давайте включим отладку и посмотрим, что мы можем найти. OFF2#clear ip eigrp 12 neighbors Этой командой мы сделаем сброс соседства EIGRP, чтобы ускорить процесс. Имейте в виду, что это, вероятно, не самое лучшее, что можно сделать в производственной сети, пока вы не узнаете, что не так, но это действительно помогает ускорить процесс. Вот наш ответ. Отладка говорит нам, что сеть 10.2.2.0 / 24 не следует объявлять, а сеть 10.0.0.0 / 8 нужно объявлять (это вкратце). Это может произойти по двум причинам: Суммирование было кем-то настроено Авто-суммирование включено для EIGRP. Как вы видите, авто-суммирование включено для EIGRP. В зависимости от версии IOS авто-суммирование включено или отключено по умолчанию. OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary OFF2(config)#router eigrp 12 OFF2(config-router)#no auto-summary Отключение автоматического суммирования должно помочь. Ну что, наши сети появились в таблице маршрутизации. Извлеченный урок: если включена автоматическое суммирование EIGRP, вы можете столкнуться с нестабильными сетями. Case #3 Очередная проблема. В приведенном выше примере у нас есть 2 маршрутизатора, но разные сети. OFF1 содержит сеть 172.16.1.0 / 24 на интерфейсе обратной связи, а OFF2 содержит сеть 172.16.2.0 / 24 и 172.16.22.0 / 24 на своих интерфейсах обратной связи. Посмотрим конфигурацию EIGRP обоих маршрутизаторов: Как вы видите, что все сети объявляются. Обратите внимание, что в OFF1 включено автоматическое суммирование, а в OFF2 отключено автоматическое суммирование. Кто-то настроил суммирование на OFF2 и отправляет ее на OFF1. Суммирование создана для сети 172.16.0.0 / 16. Однако, если посмотреть на таблицу маршрутизации OFF1, она не появится. Мы видим запись для сети 172.16.0.0 / 16, но она указывает на интерфейс null0, а не на OFF2. Что здесь происходит? OFF2#clear ip eigrp 12 neighbors Давайте сделаем отладку на OFF2, чтобы увидеть, объявляется ли суммирование. Выполним команду clear ip eigrp neighbors, просто чтобы ускорить процесс. Глядя на отладку, видно, что OFF2 работает правильно. Он объявляет сводный маршрут 172.16.0.0 / 16 так, как должен. Это означает, что проблема должна быть в OFF1. Давайте проведем отладку OFF1. Мы можем видеть, что OFF1 получает сводный маршрут от OFF2, но решает не использовать его. Это хороший момент для проверки таблицы топологии EIGRP. Вы видите, что он имеет суммирование сети 172.16.0.0 / 16 от OFF2 в своей таблице топологии EIGRP, но OFF1 решает не использовать ее, потому что вход через интерфейс null0 является лучшим путем. OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary Решение состоит в том, что нам нужно избавиться от записи null0 в таблице маршрутизации. Единственный способ сделать это - отключить автоматическое суммирование. Отключение автоматического суммирования удаляет запись null0, и теперь суммирование OFF2 установлено проблема решена! Извлеченный урок: автоматическое суммирование EIGRP создает запись через интерфейс null0, которая может помешать установке суммирования, которые вы получаете от соседних маршрутизаторов. Case #4 Есть еще одна проблема с суммированием, которую сейчас и разберем. Мы используем топологию, которую вы видите выше, и ниже конфигурация EIGRP обоих маршрутизаторов. Все сети объявлены, и автоматическое суммирование отключено на обоих маршрутизаторах. Суммирование было настроено на OFF2 и должно быть объявлено к OFF1. К сожалению, ничего не видно на OFF1. Давайте проверим OFF2, чтобы посмотреть, что не так. Когда дело доходит до устранения неполадок с сетью, вашими друзьями являются не Google или Яндекс, а команды Debug и show. Странно, это единственная сеть, которую OFF2 объявляет. Одно из золотых правил маршрутизации: вы не можете объявлять то, чего у вас нет. Очевидно, OFF2 знает только о сети 192.168.12.0 / 24. Вот это ошибка! Кто-то выполнил команду отключения на интерфейсах обратной связи. OFF2(config)#interface loopback 0 OFF2(config-if)#no shutdown OFF2(config)#interface loopback 1 OFF2(config-if)#no shutdown Включим интерфейсы. Теперь мы видим, что суммирование объявляется. Теперь мы видим суммирование в таблице маршрутизации OFF1- проблема решена! Извлеченный урок: вы не можете объявлять то, чего у вас нет в таблице маршрутизации. ВАЖНО. Последняя проблема может быть показаться простой, но есть важный момент, который вы не должны забывать: для объявления итогового маршрута в таблице маршрутизации объявляемого маршрутизатора должен быть указан хотя бы один префикс, попадающий в итоговый диапазон! Case #5 Давайте посмотрим на другую топологию. На рисунке выше у нас есть концентратор Frame Relay и соответствующая топология. Каждый из OFF1 и OFF2 имеет интерфейс обратной связи, который мы будем объявлять в EIGRP. Вот соответствующая конфигурация всех маршрутизаторов: CONC(config)#router eigrp 123 CONC(config-router)#no auto-summary CONC(config-router)#network 192.168.123.0 OFF1(config-if)#router eigrp 123 OFF1(config-router)#no auto-summary OFF1(config-router)#network 192.168.123.0 OFF1(config-router)#network 2.2.2.0 0.0.0.255 OFF2(config)#router eigrp 123 OFF2(config-router)#no auto-summary OFF2(config-router)#network 192.168.123.0 OFF2(config-router)#network 3.3.3.0 0.0.0.255 Видно, что все сети объявлены. Наш концентратор-маршрутизатор видит сети из двух OFF-маршрутизаторов. К сожалению, наши маршрутизаторы не видят ничего ... Похоже, что маршрутизатор-концентратор не объявляет сети, которые он изучает с помощью OFF-маршрутизаторов. Давайте включим отладку, чтобы увидеть, что происходит. CONC#clear ip eigrp 123 neighbors Сбросим соседство EIGRP, чтобы ускорить процесс. В отладке мы видим, что наш маршрутизатор-концентратор узнает о сети 2.2.2.0 / 24 и 3.3.3.0 / 24, но объявляет только сеть 192.168.123.0 / 24 для OFF-маршрутизаторов. Разделение горизонта не позволяет размещать объявление от одного маршрутизатора на другой. CONC(config)#interface serial 0/0 CONC(config-if)#no ip split-horizon eigrp 123 Давайте отключим разделение горизонта на последовательном интерфейсе маршрутизатора-концентратора. Теперь мы видим, что маршрутизатор-концентратор объявляет все сети. OFF-маршрутизаторы теперь могут узнавать о сетях друг друга, поскольку split horizon отключено. Это хорошо, но это еще не все. Извлеченный урок: RIP и EIGRP являются протоколами маршрутизации на расстоянии и используют split horizon. Split horizon предотвращает объявление префикса вне интерфейса, на котором мы его узнали. Хотя сети отображаются в таблицах маршрутизации мы не можем пропинговать от одного OFF-маршрутизатора к другому. Это не проблема EIGRP, но она связана с Frame Relay. Мы должны это исправить. Когда OFF1 отправляет IP-пакет на OFF2, IP-пакет выглядит следующим образом: Давайте пока подумаем, как роутер, и посмотрим, что здесь происходит. Сначала нам нужно проверить, знает ли OFF1, куда отправить 3.3.3.3: Существует запись для 3.3.3.3, а IP-адрес следующего перехода - 192.168.123.1 (маршрутизатор-концентратор). Можем ли мы достичь 192.168.123.1? Нет проблем, кажется, OFF1 может пересылать пакеты, предназначенные для сети 3.3.3.0/24. Давайте перейдем к маршрутизатору CONC. У маршрутизатора-концентратора нет проблем с отправкой трафика в сеть 3.3.3.0 / 24, поэтому на данный момент мы можем сделать вывод, что проблема должна быть в маршрутизаторе OFF2. Это IP-пакет, который получает маршрутизатор OFF2, и когда он отвечает, он создает новый IP-пакет, который выглядит следующим образом: Способен ли OFF2 достигать IP-адрес 192.168.123.2 Давайте узнаем! Теперь мы знаем проблему ... OFF2 не может достичь IP-адреса 192.168.123.2 Если мы посмотрим на таблицу маршрутизации OFF2, то увидим, что сеть 192.168.123.0 / 24 подключена напрямую. С точки зрения третьего уровня у нас нет никаких проблем. Пришло время перейти вниз по модели OSI и проверить уровень 2 ... или, может быть, между уровнем 2 и 3. Frame Relay использует Inverse ARP для привязки уровня 2 (DLCI) к уровню 3 (IP-адрес). Вы можете видеть, что нет сопоставления для IP-адреса 192.168.123.2. OFF2(config)#int s0/0 OFF2(config-if)#frame-relay map ip 192.168.123.2 301 Давайте frame-relay map сами. Теперь роутер OFF2 знает, как связаться с роутером OFF1 Наконец, маршрутизатор OFF1 может пропинговать интерфейс обратной связи маршрутизатора OFF2. Когда мы пытаемся пропинговать от маршрутизатора OFF2 к интерфейсу обратной связи маршрутизатора OFF1, у нас возникает та же проблема, поэтому мы также добавим туда оператор frame-relay map: OFF1(config)#int s0/0 OFF1(config-if)#frame-relay map ip 192.168.123.3 201 Теперь у нас есть extra frame-relay map на маршрутизаторе OFF1. И наш пинг проходит!
img
Друзья, сегодня речь пойдет о синтезе речи в Asterisk. Этот простой способ позволит вам озвучивать требуемое голосовое сообщение в структурах IVR или обычных приветствиях. Да где угодно. Профит этого решения: Единый голос для всех аудио – файлов; Кэширование и сохранение озвученных текстов, фраз в виде медиа - файлов, для последующего использования на Asterisk; Получаем токен Приступим. Прежде всего нужно получить API - токен на использование сервиса от Яндекс. Этот процесс расписан в статье по ссылке ниже (раздел Получение API - токена Yandex.SpeechKit): Получение токена Возвращайтесь с токеном и будем приступать к коду :) Кодим! Для начала создадим директорию /var/lib/asterisk/tts/ и дадим права. Там мы будем хранить текстовый файл, благодаря которому, сможем идентифицировать аудио – файлы по совпадению MD5 названия. Внутри файла будет фраза: mkdir /var/lib/asterisk/tts/ chown asterisk:asterisk /var/lib/asterisk/tts/ chmod 775 /var/lib/asterisk/tts/ В зависимости от дистрибутива и вариантов установки IP – АТС Asterisk, звуковые файлы могут располагаться в другой директории. Вы можете самостоятельно поправить это в скрипте. Использовать будем AGI приложение. Традиционно, комментарии к коду прикладываются: #!/usr/bin/php -q <?php error_reporting(0); // выключаем ошибки, необязательно, нужно в процесcе дебага скрипта require('phpagi.php'); $agi = new AGI(); $str = $agi->request['agi_arg_1']; //записываем в переменную текст, который необходимо озвучить $str = iconv('cp1251', 'utf-8', $str); // конвертируем в кириллическую кодировку $md5 = md5($str); //вычисляем md5 - хэш от переменной $str $prefix = '/var/lib/asterisk/sounds/ru/custom/'; //устанавливаем директорию для файлов. Мы ее создавали по ходу движения $filename = $prefix.$md5; //устанавливаем название файла(оно будет равно md5 текста) $format = 'wav'; //устанавливаем формат получаемого файла от Яндекс $quality = 'hi'; //устанавливаем качество $speaker = 'oksana'; //выбираем голос. На момент написания статьи доступны женские голоса: jane, oksana, alyss и omazh и мужские голоса: zahar и ermil. $emotion = 'evil'; // выбираем интонацию голоса, good — радостный, доброжелательный, evil — раздраженный, neutral — нейтральный (используется по умолчанию). Будем злее :) $speed = '0.9'; // данный параметр отвечает за скорость (темп) речи, подбирается опытным путем на слух, в данном случае оптимальный $key = 'Ваш_токен'; //ваш токен, который вы получили ранее. if (!file_exists($filename.'.wav')) { $qs = http_build_query(array("format" => $format,"quality" => $quality,"lang" => "ru-RU","speaker" => $speaker,"speed" => $speed,"key" => $key,"emotion" => $emotion, "text" => $str)); //формируем строку запроса $ctx = stream_context_create(array("http"=>array("method"=>"GET","header"=>"Referer: "))); $soundfile = file_get_contents("https://tts.voicetech.yandex.net/generate?".$qs, false, $ctx); //запрашиваем файл $file = fopen("file1.wav", "w"); //открываем файл для записи fwrite($file, $soundfile); // пишем в файл данные fclose($file); //закрываем файл shell_exec('sox -t raw -r 48k -e signed-integer -b 16 -c 1 file1.wav -t wav -r 8k -c 1 '.$filename.'.wav'); //конвертируем файл под требования Asterisk и закидываем в директорию для аудио shell_exec('chown asterisk:asterisk '.$filename.'.wav'); shell_exec('chmod 775 '.$filename.'.wav'); // даем файлу нужные пермишны; shell_exec('rm -f file1.wav'); // удаляем файл, который создали в процессе обращения к API; shell_exec('echo '.$str.' > /var/lib/asterisk/tts/'.$md5.'.txt'); // добавляем магии ;-) о ней ниже в тексте статьи. } $agi->exec('Playback',"custom/$md5"); //проигрываем файл звонящему. Скачать скрипт синтеза речи После загрузки файла, сохраните его с расширением .php Сохраняем скрипт как texttospeech.php и закидываем его в директорию /var/lib/asterisk/agi-bin. После, даем последовательность следующих команд: dos2unix /var/lib/asterisk/agi-bin/texttospeech.php chown asterisk:asterisk /var/lib/asterisk/agi-bin/texttospeech.php chmod 775 /var/lib/asterisk/agi-bin/texttospeech.php Как вы могли заметить, скрипт настраивается. Голос, интонация, скорость речи, качество получаемого файла – подлежат корректировке для вашей задачи. Схема работы всего процесса следующая: Скрипт получает из диалплана текст по AGI и сохраняет в переменной; Если у нас уже существует аудио – файл для заранее записанной фразы, мы отдаем в диалплан команду на воспроизведение. Если нет – обращаемся к API; Скрипт отправляет запрос в сторону API Яндекса; Происходит конвертация полученного аудио – файла в нужный формат; Даем права файлу для воспроизведения на Asterisk и удаляем временный файл; Делаем отметку о создании файла в служебный текстовый файл; Воспроизводим файл; А как заставить скрипт работать? Очень просто. Открываем файл /etc/asterisk/extensions_custom.conf для редактирования и добавляем в него следующую запись: [text_to_speech] exten => s,1,Answer() exten => s,2,AGI(texttospeech.php,"Привет! Это Мерион Нетворкс. Если ты слышишь это сообщение, значит все сделал правильно!") Сохраняем изменения и прыгаем в FreePBX. Будем вызывать кастомный контекста из FreePBX. Для этого воспользуемся модулем Custom Destinations. Переходим по пути Admin → Custom Destinations и нажимаем Add Destination: Настроили и сохранили. Наша задумка такова – человек звонит на наш номер, набирает 13 и попадает на синтезированное сообщение. Переходим в главный IVR и в секции IVR Entries добавляем следующее: Звоним, проверяем. Работает :) Если хотите заменить фразу, которую нужно озвучить, просто поправьте ее в файле /etc/asterisk/extensions_custom.conf.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59