По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Восьмая часть тут. Формат Type Length Value (TLV) является еще одним широко используемым решением проблемы маршалинга данных. На рисунке 1 показан пример протокола маршрутизации от промежуточной системы к промежуточной системе IS-IS. На рисунке 1 пакет состоит из заголовка, который обычно имеет фиксированную длину, а затем из набора TLV. Каждый TLV форматируется на основе своего типа кода. В этом случае показаны два типа TLV (в IS-IS есть много других типов; два используются здесь для иллюстрации). Первый тип - 135, который несет информацию о версии 4 протокола IP (IPv4). Этот тип имеет несколько полей, некоторые из которых имеют фиксированную длину, например, метрика. Другие, однако, такие как префикс, имеют переменную длину; длина поля зависит от значения, размещенного в каком-либо другом поле в TLV. В этом случае поле длины префикса определяет длину поля префикса. Существуют также суб-TLV, которые имеют аналогичный формат и несут информацию, связанную с этой информацией IPv4. Тип 236 аналогичен 135, но он несет информацию по IPv6, а не IPv4. По существу, TLV можно рассматривать как полный набор автономной информации, переносимой в более крупном пакете. TLV состоит из трех частей: Тип кода, который описывает формат данных Длина, которая описывает общую длину данных Значение или сами данные Форматы на основе TLV менее компактны, чем форматы фиксированной длины, поскольку они содержат больше метаданных в самом пакете. Информация о типе и длине, содержащаяся в данных, предоставляет информацию о том, где искать в словаре информацию о форматировании, а также информацию о грамматике для использования (как каждое поле отформатировано и так далее). Форматы TLV компенсируют возможность изменять форматирование информации, передаваемой протоколом, не требуя обновления каждого устройства или позволяя некоторым реализациям выбирать не поддерживать все возможные TLV по сравнению с дополнительными метаданными, передаваемыми по проводам. TLV обычно считаются очень гибким способом маршалинга данных в протоколах. Словари общих объектов Одной из основных проблем с полями фиксированной длины является фиксированность определений полей; если вы хотите изменить протокол поля фиксированной длины, вам нужно увеличить номер версии и изменить пакет, или вы должны создать новый тип пакета с различными кодировками для полей. Форматирование TLV решает эту проблему путем включения встроенных метаданных с передаваемыми данными за счет передачи большего количества информации и уменьшения компактности. Общие скомпилированные словари пытаются решить эту проблему, помещая словарь в общий файл (или библиотеку), а не в спецификацию. Рисунок 2 иллюстрирует процесс. На рисунке 2 этот процесс начинается с того, что разработчик создает структуру данных для организации определенного набора данных, которые будут передаваться по сети. Как только структура данных построена, она компилируется в функцию или, возможно, копируется в библиотеку функций (1) и копируется в приемник (2). Затем приемник использует эту библиотеку для написания приложения для обработки этих данных (3). На стороне передатчика необработанные данные кодируются в формат (4), а затем передаются по протоколу через сеть к приемнику (5). Получатель использует свою общую копию формата данных (6) для декодирования данных и передачи декодированной информации принимающему приложению (7). Этот вид системы сочетает в себе гибкость модели на основе TLV с компактностью протокола фиксированного поля. Хотя поля имеют фиксированную длину, определения полей задаются таким образом, чтобы обеспечить быстрое и гибкое обновление при необходимости изменения формата маршалинга. Пока общая библиотека отделена от приложения, использующего данные, словарь и грамматика могут быть изменены путем распространения новой версии исходной структуры данных. Потребуется ли «День флага», если будет распространена новая версия структуры данных? Необязательно. Если номер версии включен в структуру данных, чтобы получатель мог сопоставить полученные данные с правильной структурой данных, то в системе одновременно может существовать несколько версий структуры данных. Как только отправитель не найден с использованием более старого формата данных, старая структура может быть безопасно отброшена по всей системе. Важно: в то время как системы фиксированного формата и TLV рассчитывают на то, что разработчики читают спецификации и пишут код как форму совместного использования грамматики и словаря, системы общей структуры данных, описанные в этих лекциях, рассчитывают на то, что общий словарь будет распространяться каким-то другим способом. Есть много различных способов сделать -это, например, новая версия программного обеспечения может быть распространена среди всех отправителей и получателей, или некоторая форма распределенной базы данных может использоваться для обеспечения того, чтобы все отправители и получатели получали обновленные словари данных, или некоторая часть приложения, которая специально управляет маршалингом данных, может быть распределена и сопряжена с приложением, которое генерирует и потребляет данные. Некоторые системы такого рода передают общий словарь как часть первоначальной настройки сеанса.
img
Допустим, Вы решили обзавестись IP телефонией для своего офиса. Вы закупили необходимое количество телефонов, настроили voice VLAN, DHCP, TFTP серверы и определились с номерным планом. Однако, прежде чем Ваш IP Phone зазвонит, ему еще предстоит пройти процедуру загрузки, так называемый Bootup или Startup process, которому и будет посвящена данная статья. В качестве примера будет рассмотрен процесс загрузки Cisco IP Phone под управлением Cisco CallManager. Понимание данного процесса даст более полное представление о работе телефонов Cisco и IP телефонии в целом, а также поможет в оперативном траблшутинге неисправностей. Итак, пусть имеется некая сеть, содержащая: сервер с Cisco CallManager, сервер DHCP, сервер TFTP, коммутатор с поддержкой PoE (Power over Ethernet) и Cisco IP Phone, как показано на рисунке ниже. Допустим, что наш коммутатор и телефон поддерживают протокол PoE. Тогда, сразу после того, как телефон будет подключен к одному из Ethernet портов, коммутатор отреагирует специальным сигналом FLP (Fast Link Pulse), который определяет, имеет ли подключенное устройство питание. Возвращение FLP в форме петли (loopback) на порт коммутатора, к которому недавно было подключено новое устройство, сигнализирует о том, что на данный порт необходимо незамедлительно подать питание. Таким образом, IP Phone по протоколу PoE 802.3af получает питание в 48 Вольт. Cisco IP Phone имеет встроенную, энергонезависимую Flash-память, в которой хранится образ прошивки и начальные пользовательские настройки. В процессе начальной загрузки телефон, загружая из Flash-памяти образ прошивки, инициализирует своё программное обеспечение и аппаратные средства. Как только телефон получил питание и прошел POST (Power-on self-test) для проверки базовой функциональности, коммутатор, по проприетарному протоколу CDP (Cisco Discovery Protocol), отправляет на телефон информацию о том, какой voice VLAN необходимо использовать. Затем, IP Phone отправляет на широковещательный адрес 255.255.255.255 запрос DHCPDISCOVER, в свою очередь DHCP сервер возвращает ответ DHCPOFFER, который содержит следующую информацию: Свободный IP адрес Маска подсети Адрес шлюза по умолчанию (Default Gateway) Адрес DNS (Domain Name System) сервера. (опционально) Адрес TFTP (Trivial File Transfer Protocol) сервера, на котором хранится файл конфигурации для телефонов. Адрес TFTP сервера задается при конфигурировании DHCP по средствам, так называемой опции 150 (option 150). Синтаксис команды приведен ниже: option 150 ip 'TFTP server IP address' После того как телефон с помощью option 150 получил адрес TFTP сервера, он скачивает конфигурационный файл, содержащий параметры для подключения к CallManager. Если телефон был зарегистрирован на CallManager’е вручную, то он начинает проверять файл .cnf.xml, который определяет какую версию программного обеспечения должны использовать все телефоны, зарегистрированные в данном CallManager’е. Если обнаруживается, что загруженный образ не соответствует общепринятому, то телефон вновь обращается на TFTP сервер для получения корректного образа, хранящегося там в формате .bin. После обращения к TFTP, загрузив новый образ, телефон инициирует установление TCP соединения с CallManager’ом. Данное соединение открывает возможность использования функционала Cisco IP Phone в полной степени. Как видите, с того момента как наш IP Phone был подключен в один из портов коммутатора и до того момента, когда мы можем совершать звонки, он проходит еще множество всевозможных этапов загрузки, большинство из которых, конечный пользователь даже не заметит.
img
В сегодняшней статье мы опишем процесс установки Proxmox Virtual Environment (VE) — систему управления виртуализации с открытым кодом, которая базируется на QEMU/KVM и LXC. Данное решение позволяет вам управлять виртуальными машинами, контейнерами, отказоустойчивыми кластерами, СХД и прочие — все это с помощью веб-интерфейса или CLI. Чтобы было понятнее — Proxmox VE это альтернатива c открытым программным кодом таким продуктам как VMware vSphere, Microsoft Hyper-V или Citrix XenServer. Важное уточнение — согласно лицензии GNU AGPL v3 данное ПО является бесплатным, но, есть возможность купить подписку. Подписка дает следующие преимущества — поддержка от вендора/коммьюнити (в зависимости от выбранного плана), доступ к репозиторию и так далее. Скачать данную платформу можно по следующей ссылке: https://www.proxmox.com/en/downloads Немного о системных требованиях — в идеале, требуется железный сервер, предпочтительно многопроцессорный и 8 Гб памяти для самого Proxmox и остальное — для гостевых машин + 2 сетевых карты. В нашем примере мы установим Proxmox также на виртуальный сервер исключительно для демонстрации процесса установки, и выделили ему 1 Гб оперативной памяти. Список поддерживаемых браузеров включает Chrome, Mozilla Firefox, Safari и IE (актуальные версии). Установка Итак, вы скачали ISO-file по ссылке выше, запустили виртуальную машину и должны увидеть следующее: Кликаем на Install Proxmox VE. После этого появится черный экран с различной информацией, затем (в моем случае, из-за установки на виртуальную машину) появиться предупреждение об отсутствии поддержки виртуализации, и, наконец, откроется окно с установкой и EULA: Читаем, и, надеюсь, соглашаемся с лицензионным соглашением и кликаем Agree: Затем, нам предлагают выбрать диск для установки — выбираем и кликаем Next: Выбираем страну и часовой пояс и кликаем далее: Затем придумываем сложный рутовый пароль и вводим действующий емейл — на него в случае чего будут сыпаться алерты: Указываем настройки сети — выбираем адаптер, указываем хостнейм и так далее. В моем случае я только указал иной хостнейм. Кликаем Next: Начинается процесс установки, который занимает не более 10 минут: Установка заканчивается, и все, что нужно сделать — это нажать Reboot. После перезагрузки скрипт попытается извлечь установочный ISO из виртуального дисковода, и, по каким-то неясным мне причинам, на виртуальной машине Hyper-V скрипт потерпел неудачу и данный шаг пришлось выполнять руками. После перезагрузки вы увидите адрес, по которому нужно зайти в браузере для завершения установки. В данном случае это https://192.168.1.38:8006 Появляется окно логина, с возможностью выбрать язык. Вводите логин root и пароль, который вы указывали при установке: И, наконец, системой можно пользоваться! К примеру, можете кликнуть на вкладку Датацентр слева и увидеть сводку информации по системе: Примеры использования Первым делом попробуем создать виртуальную машину (и да, алерт касаемо отсутствия поддержки виртуализации все еще висит перед глазами, но все равно интересно!). В правом верхнем углу кликаем на кнопку Создать VM: Задаем имя, кликаем далее, указываем всю необходимую информацию и, в конце концов нас ожидает следующее: Как и следовало ожидать, однако… Теперь перейдем к созданию контейнера — для этого кликните в левом верхнем углу на ваш «датацентр», затем на первое «хранилище» - в данном случае это local (merionet). Затем кликните на кнопку Шаблоны и скачайте один из шаблонов — я для этой цели выбрал простой Debian. Начнется процесс скачивания, по завершению которого, можно будет закрыть данное диалоговое окно. Теперь нажимаем в левом верхнем углу Создать CT На первой вкладке указываем его хостнейм и пароль и кликаем Далее. На скриншоте выше видны сетевые настройки, выбранные мной для примера создания контейнера. После чего проверяем настройки и нажимаем Завершить. Начнется процесс создания контейнера, и нужно будет буквально несколько секунд подождать. Затем вы можете кликнуть в левом верхнем углу на него и попробовать поделать различные манипуляции! На этом все, это была статья по установке Proxmox VE на виртуальную машину и максимально базовый обзор его возможностей. В будущем у нас появятся новые статьи на эту тему, с более подробным обзором функционала данного ПО.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59