По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Еще в 2000 году до нашей эры, когда алгоритмы только были изобретены, их создатели, наверное, даже представить не могли, что их будут использовать для управления большими металлическими самоходными средствами передвижения, которые сейчас для нас больше известны как «автомобили». Но сейчас, когда мы с вами живем в 21 веке, мы используем алгоритмы для управления многими аспектами нашей жизни – от искусственного интеллекта до криптовалюты и входа в обычные онлайн-сервисы.  Так что, если вы планируете искать работу, связанную с алгоритмами, то вы открываете для себя очень актуальную область с большим количеством возможностей. А теперь пришло время подготовиться к тому, чтобы произвести впечатление! Мы подготовили для вас 15 вопросов по алгоритмам, которые помогут вам подготовиться к собеседованию.  Читайте дальше, чтобы узнать о самых распространенных вопросах об алгоритмах, а также ответы на них и о том, как усовершенствовать свои навыки, чтобы подготовиться к собеседованию. Что такое алгоритм? Несмотря на то, что этот вопрос – элементарный, если вам задают его, важно ответить на него уверенно и без лишних слов. Алгоритм представляет собой последовательность вычислительных шагов, которые принимают входные данные или несколько входных данных и преобразуют их в выходные данные. Алгоритм можно написать в разных формах, например, с помощью обычного русского языка или используя псевдокод.  После того, как вы дадите краткий ответ, как этот, вы можете углубиться в эту тему, если захотите. Лучше сделать это на каком-то примере.  Что такое быстрая сортировка? Этот вопрос нужен для того, чтобы проверить, способны ли вы применять алгоритмы хотя бы на самом базовом уровне. Алгоритм быстрой сортировки подходит для быстрой сортировки запросов или списков. В его основе лежит так называемый метод «разделяй и властвуй», то есть он занимается перестановкой групп, каждая из которых является одной из трех частей списка элементов: Опорный элемент, выбранный из массива Элементы меньше опорного размещаются слева от него для формирования левого подмассива Элементы больше опорного размещаются справа от него для формирования правого подмассива В подмассивах также выбирается опорный элемент, а остальные значения сортируются относительного него аналогично. Процесс повторяется до тех пор, пока в подмассивах не останется только один элемент.  Временная сложность алгоритма: Наилучший случай:  On log   n   . Значение опорного элемента близко к среднему значению всех сортируемых элементов. Наихудший случай:  On2 . Значение опорного элемента – это либо наибольшее, либо наименьшее значение всех сортируемых элементов.  Средний случай:  On log   n   .    В чем заключается роль опорного элемента? Это еще один вопрос из темы поверхностного погружения в основы алгоритмов. Вы можете ответить, сказав, что опорный элемент – это элемент, который алгоритм выбирает из массива или матрицы, с которыми мы работаем, и который будет служить первым элементом для вычислений.  Есть множество способов, как выбрать опорный элемент. Для массива опорным элементом может служить первый или последний элемент, выбранный из середины или случайным образом. В зависимости от алгоритма способ выбора опорного элемента может влиять на качество результата.  Что понимается под временной сложностью алгоритма? Это еще одно базовое понятие, связанное с алгоритмами, и поэтому ваш ответ должен начинаться с краткого определения. Временная сложность алгоритма – это количество итераций, которые необходимы для его завершения, в зависимости от размера входных данных.  Объясните различные обозначения, которые используют, когда речь идет о временной сложности Отвечая на этот и любые последующие вопросы, вы демонстрируете свои знания того, как работают алгоритмы, а также что вы знаете, как их можно изменить, чтобы достичь желаемого результата.  Обозначения могут помочь оценить эффективность алгоритма. Вот обозначения, которые вы используете для временной сложности: Большая омега: это означает «больше или столько же» итераций. Это точная нижняя граница роста времени работы алгоритма. По сути это наилучший случай временной сложности.  Большое О: это означает «меньше или столько же» итераций. Это точная верхняя граница роста времени работы алгоритма. По сути это наихудший случай временной сложности.  Большая тета: это означает «столько же» итераций. Это одновременно и точная верхняя граница, и точная нижняя граница роста времени работы алгоритма.  Маленькое О: это означает «меньше чем» итераций. Это верхняя граница, которая не является асимптотически точной.  Маленькая омега: это означает «больше чем» итераций. Это нижняя граница, которая не является асимптотически точной.    Как работает бинарный поиск? Бинарный поиск используется для поиска элемента в уже отсортированном массиве. Первым делом мы смотрим на элемент в середине массива. Если это и есть искомый элемент, то поиск завершен. В противном случае, если искомый элемент больше того, что мы выбрали, процедура поиска повторяется в верхней половине массива (то есть среди значений, которые больше выбранного нами). Если же он меньше, то процедура поиска выполняется в нижней половине массива (то есть среди значений, которые меньше выбранного нами).  Временная сложность алгоритма: Наилучший случай:  O1 . Искомое значение - это первый выбранный средний элементом.  Наихудший случай:  Olog   n   . Мы нашли искомое значение на одном из последних шагов, или оно вовсе отсутствует.  Средний случай:  Olog   n   .    Что подразумевается под сортировкой кучей (пирамидальной сортировкой)? Сортировка кучей, или пирамидальная сортировка, подразумевает сравнение элементов с помощью алгоритма сортировки. Входные данные делятся на отсортированную и неотсортированную части. То, что перемещается в отсортированную часть, зависит от того, работаете вы с невозрастающей или возрастающей кучей. Невозрастающая куча в корне имеет элемент с максимальным значением, а возрастающая – с минимальным. Когда вы используете пирамидальную сортировку на невозрастающей куче, то неотсортированная часть уменьшается, так как самый большой элемент перемещается в отсортированную часть. В случае с возрастающей кучей в отсортированную часть перемещается элемент с наименьшим значением.  В невозрастающей куче значение родительского узла всегда больше, чем значения дочерних узлов. Для того, чтобы отсортировать элементы невозрастающей кучи с помощью алгоритма пирамидальной сортировки, необходимо выполнить следующие шаги: Заменить последний элемент кучи корневым узлом Убрать последний элемент, который мы только что поместили, из кучи Преобразовать теперь уже двоичную кучу обратно в невозрастающую Повторять процесс, пока не закончатся элементы.  Временная сложность алгоритма: Наилучший случай:  O (n log   n   ) . Наихудший случай:  O (n log   n   ) . Средний случай:  O (n log   n   ) .   Для чего используется список пропусков? Список пропусков используется для структурирования данных. В его основе лежат связные списки. А для того, чтобы создавать уровни новых ссылок в исходном связном списке, он использует вероятности. Можно провести аналогию с сетью автобусных маршрутов. Есть автобусы, которые останавливаются на каждой остановке, а есть такие, которые останавливаются только на определенных. У последних остановок меньше, чем у обычных автобусов. Создание новых уровней в списке пропусков можно рассматривать как вот такие ускоренные маршруты с меньшим количеством остановок. Если вы можете получать более эффективный доступ к наиболее часто используемым узлам, то такие задачи, как вставки или удаление узлов, станут намного проще и быстрее. И это будет более эффективно, чем применение каких-то других алгоритмов.  Какие криптографические алгоритмы являются наиболее распространенными? Этот вопрос может показаться чересчур сложным, потому что вам кажется, что вам нужно запомнить огромное количество информации, но если вы вдруг пропустите пару алгоритмов, то никто не будет вас за это наказывать. И к тому же существует огромное количество алгоритмов. Вот некоторые из них: IDEA Blowfish CAST LOKI DES GOST 3-way Что такое алгоритм хеширования и как он используется? Вам захочется устроиться поудобнее, отвечая на этот вопрос, ведь хеш-алгоритмы сейчас очень популярны, так как используются в криптографии. Алгоритм хеширования ссылается на хеш-функцию, которая берет строку и преобразует ее в строку фиксированной длины, и не важно, какой длины она была изначально. Вы можете использовать алгоритм хеширования для самых разных целей – от криптовалюты до паролей и ряда других инструментов проверки.  Какую роль играют алгоритмы в криптовалюте? Если вы устраиваетесь на работу, связанную с криптовалютой, то этот вопрос может оказаться для вас не таким простым, особенно если вы умудрились заблудиться в трех соснах, отвечая на него. Один из способов, как ответить на этот вопрос – упомянуть, насколько сильно криптовалюты на основе блокчейна зависят от криптографии. Блоки или записи, составляющие блокчейн, защищены с помощью криптографических методов, таких как хеш-алгоритмы. Также есть алгоритмы, которые используют для генерации открытых и закрытых ключей и для «майнинга» криптовалют. Как работает алгоритм шифрования? Такого рода вопросы на собеседовании могут дать вам некоторую подсказку о том, для какой работы вам могут нанять. Алгоритм шифрования преобразует обычный текст в код, или зашифрованный текст. Для этого алгоритм использует ключи. Чем длиннее ключи, тем больше есть возможностей для создания зашифрованного текста.  Что такое алгоритм поразрядной сортировки? Поразрядная сортировка может пригодиться при работе с базами данных, или если ваша должность предусматривает то, что вы должны быть готовы ответить на этот вопрос. Поразрядная сортировка – это алгоритм сортировки, который не сравнивает элементы, а распределяет их по «корзинам», основываясь на разрядах. Если есть элементы с более чем одной значащей цифрой, то распределение по «корзинам» повторяется для каждой цифры.  Что такое рекурсивный алгоритм? Рекурсивный алгоритм опирается на способ решения, при котором сложная задача разбивается на более мелкие подзадачи. Это делается до тех пор, пока не получится достаточно простая задача, которую можно было бы легко решить. Одним из примеров алгоритма, который можно реализовать рекурсивно, является бинарный поиск.  Какие три закона должны выполняться для рекурсивных алгоритмов? Такие вопросы на собеседовании могут быть продолжением вопроса «Что такое рекурсивный алгоритм?» Рекурсивный алгоритм должен следовать следующим законам: У него должен быть нерекурсивный вариант реализации. Он должен вызывать сам себя. Его можно изменить и вернуть к нерекурсивному варианту.
img
Буферизация пакетов для работы с перегруженным интерфейсом кажется прекрасной идеей. Действительно, буферы необходимы для обработки трафика, поступающего слишком быстро или несоответствия скорости интерфейса - например, при переходе от высокоскоростной LAN к низкоскоростной WAN. До сих пор это обсуждение QoS было сосредоточено на классификации, приоритизации и последующей пересылке пакетов, помещенных в очередь в этих буферах, в соответствии с политикой. Максимально большой размер буферов кажется хорошей идеей. Теоретически, если размер буфера достаточно велик, чтобы поставить в очередь пакеты, превышающие размер канала, все пакеты в конечном итоге будут доставлены. Однако, как большие, так и переполненные буферы создают проблемы, требующие решения. Когда пакеты находятся в буфере, они задерживаются. Некоторое количество микросекунд или даже миллисекунд добавляется к пути пакета между источником и местом назначения, пока они находятся в буфере, ожидая доставки. Задержка перемещения является проблемой для некоторых сетевых разговоров, поскольку алгоритмы, используемые TCP, предполагают предсказуемую и в идеале небольшую задержку между отправителем и получателем. В разделе активного управления очередью вы найдете различные методы управления содержимым очереди. Некоторые методы решают проблему переполненной очереди, отбрасывая достаточно пакетов, чтобы оставить немного места для вновь поступающих. Другие методы решают проблему задержки, поддерживая небольшую очередь, минимизируя время, которое пакет проводит в буфере. Это сохраняет разумную задержку буферизации, позволяя TCP регулировать скорость трафика до скорости, соответствующей перегруженному интерфейсу. Управление переполненным буфером: взвешенное произвольное раннее обнаружение (WRED) Произвольное раннее обнаружение (RED) помогает нам справиться с проблемой переполненной очереди. Буферы не бесконечны по размеру: каждому из них выделено определенное количество памяти. Когда буфер заполняется пакетами, новые поступления отбрасываются. Это не сулит ничего хорошего для критического трафика, такого как VoIP, от которого нельзя отказаться, не повлияв на взаимодействие с пользователем. Способ решения этой проблемы - убедиться, что буфер никогда не будет полностью заполнен. Если буфер никогда не заполняется полностью, то всегда есть место для приема дополнительного трафика. Чтобы предотвратить переполнение буфера, RED использует схему упреждающего отбрасывания выбранного входящего трафика, оставляя места открытыми. Чем больше заполняется буфер, тем больше вероятность того, что входящий пакет будет отброшен. RED является предшественником современных вариантов, таких как взвешенное произвольное раннее обнаружение (WRED). WRED учитывает приоритет входящего трафика на основе своей отметки. Трафик с более высоким приоритетом будет потерян с меньшей вероятностью. Более вероятно, что трафик с более низким приоритетом будет отброшен. Если трафик использует какую-либо форму оконного транспорта, например, такую как TCP, то эти отбрасывания будут интерпретироваться как перегрузка, сигнализирующая передатчику о замедлении. RED и другие варианты также решают проблему синхронизации TCP. Без RED все входящие хвостовые пакеты отбрасываются при наличии переполненного буфера. Для трафика TCP потеря пакетов в результате отбрасывания хвоста приводит к снижению скорости передачи и повторной передаче потерянных пакетов. Как только пакеты будут доставлены снова, TCP попытается вернуться к более высокой скорости. Если этот цикл происходит одновременно во многих разных разговорах, как это происходит в сценарии с отключением RED-free, интерфейс может испытывать колебания использования полосы пропускания, когда канал переходит от перегруженного (и сбрасывания хвоста) к незагруженному и недоиспользованному, поскольку все д throttled-back TCP разговоры начинают ускоряться. Когда уже синхронизированные TCP-разговоры снова работают достаточно быстро, канал снова становится перегруженным, и цикл повторяется. RED решает проблему синхронизации TCP, используя случайность при выборе пакетов для отбрасывания. Не все TCP-разговоры будут иметь отброшенные пакеты. Только определенные разговоры будут иметь отброшенные пакеты, случайно выбранные RED. TCP-разговоры, проходящие через перегруженную линию связи, никогда не синхронизируются, и колебания избегаются. Использование каналов связи более устойчиво. Управление задержкой буфера, Bufferbloat и CoDel Здесь может возникнуть очевидный вопрос. Если потеря пакетов - это плохо, почему бы не сделать буферы достаточно большими, чтобы справиться с перегрузкой? Если буферы больше, можно поставить в очередь больше пакетов, и, возможно, можно избежать этой досадной проблемы потери пакетов. Фактически, эта стратегия больших буферов нашла свое применение в различных сетевых устройствах и некоторых схемах проектирования сети. Однако, когда перегрузка канала приводит к тому, что буферы заполняются и остаются заполненными, большой буфер считается раздутым. Этот феномен так хорошо известен в сетевой индустрии, что получил название: bufferbloat. Bufferbloat имеет негативный оттенок, потому что это пример слишком большого количества хорошего. Буферы - это хорошо. Буферы предоставляют некоторую свободу действий, чтобы дать пачке пакетов где-нибудь остаться, пока выходной интерфейс обработает их. Для обработки небольших пакетов трафика необходимы буферы с критическим компромиссом в виде введения задержки, однако превышение размера буферов не компенсирует уменьшение размера канала. Канал имеет определенную пропускную способность. Если каналу постоянно предлагается передать больше данных, чем он может передать, то он плохо подходит для выполнения требуемой от него задачи. Никакая буферизация не может решить фундаментальную проблему пропускной способности сети. Увеличение размера буфера не улучшает пропускную способность канала. Фактически, постоянно заполненный буфер создает еще большую нагрузку на перегруженный интерфейс. Рассмотрим несколько примеров, противопоставляющих протоколов Unacknowledged Datagram Protocol (UDP) и Transmission Control Protocol (TCP). В случае VoIP-трафика буферизованные пакеты прибывают с опозданием. Задержка чрезвычайно мешает голосовой беседе в реальном времени. VoIP - это пример трафика, передаваемого посредством UDP через IP. UDP-трафик не подтверждается. Отправитель отправляет пакеты UDP, не беспокоясь о том, доберутся ли они до места назначения или нет. Повторная передача пакетов не производится, если хост назначения не получает пакет UDP. В случае с VoIP - здесь важно, пакет приходит вовремя или нет. Если это не так, то нет смысла передавать его повторно, потому что уже слишком поздно. Слушатели уже ушли. LLQ может прийти вам в голову как ответ на эту проблему, но часть проблемы - это слишком большой буфер. Для обслуживания большого буфера потребуется время, вызывающее задержку доставки трафика VoIP, даже если LLQ обслуживает трафик VoIP. Было бы лучше отбросить VoIP-трафик, находящийся в очереди слишком долго, чем отправлять его с задержкой. В случае большинства приложений трафик передается по протоколу TCP через IP, а не по протоколу UDP. TCP - протокол подтверждений. Отправитель трафика TCP ожидает, пока получатель подтвердит получение, прежде чем будет отправлен дополнительный трафик. В ситуации bufferbloat пакет находится в переполненном, слишком большом буфере перегруженного интерфейса в течение длительного времени, задерживая доставку пакета получателю. Получатель получает пакет и отправляет подтверждение. Подтверждение пришло к отправителю с большой задержкой, но все же пришло. TCP не заботится о том, сколько времени требуется для получения пакета, пока он туда попадает. И, таким образом, отправитель продолжает отправлять трафик с той же скоростью через перегруженный интерфейс, что сохраняет избыточный буфер заполненным и время задержки увеличивается. В крайних случаях отправитель может даже повторно передать пакет, пока исходный пакет все еще находится в буфере. Перегруженный интерфейс, наконец, отправляет исходный буферизованный пакет получателю, а вторая копия того же пакета теперь находится в движении, что создает еще большую нагрузку на уже перегруженный интерфейс! Эти примеры демонстрируют, что буферы неподходящего размера на самом деле не годятся. Размер буфера должен соответствовать как скорости интерфейса, который он обслуживает, так и характеру трафика приложения, который может проходить через него. Одна из попыток со стороны сетевой индустрии справиться с большими буферами, обнаруженными вдоль определенных сетевых путей, - это контролируемая задержка, или CoDel. CoDel предполагает наличие большого буфера, но управляет задержкой пакетов, отслеживая, как долго пакет находится в очереди. Это время известно, как время пребывания. Когда время пребывания пакета превысило вычисленный идеал, пакет отбрасывается. Это означает, что пакеты в начале очереди-те, которые ждали дольше всего-будут отброшены до пакетов, находящихся в данный момент в хвосте очереди. Агрессивная позиция CoDel в отношении отбрасывания пакетов позволяет механизмам управления потоком TCP работать должным образом. Пакеты, доставляемые с большой задержкой, не доставляются, а отбрасываются до того, как задержка станет слишком большой. Отбрасывание вынуждает отправителя TCP повторно передать пакет и замедлить передачу, что очень желательно для перегруженного интерфейса. Совокупный результат - более равномерное распределение пропускной способности для потоков трафика, конкурирующих за интерфейс. В ранних реализациях CoDel поставлялся в устройства потребительского уровня без параметров. Предполагаются определенные настройки по умолчанию для Интернета. Они включают 100 мс или меньше времени двустороннего обмена между отправителями и получателями, а задержка 5 мс является максимально допустимой для буферизованного пакета. Такая конфигурация без параметров упрощает деятельность поставщиков сетевого оборудования потребительского уровня. Потребительские сети являются важной целью для CoDel, поскольку несоответствие высокоскоростных домашних сетей и низкоскоростных широкополосных сетей вызывает естественную точку перегрузки. Кроме того, сетевое оборудование потребительского уровня часто страдает от слишком большого размера буферов.
img
Веб-разработчики являются неотъемлемой частью эпохи Интернета. Веб-сайты и мобильные страницы, с которых мы получаем большую часть нашей информации, совершаем покупки, бронируем билеты и так далее, созданы и управляются веб-разработчиками. Веб-разработчики - это люди, которые проектируют и разрабатывают веб-сайты и мобильные приложения. Они используют несколько языков программирования для реализации необходимых функций. Веб-приложение или мобильное приложение имеют множество различных компонентов, которые взаимодействуют друг с другом для создания всей функциональности системы. Из-за этого сложного характера веб-разработчиков можно разделить на Front-End, Back-End и Full-stack разработчиком. Как стать веб-разработчиком Front-End веб-разработчики также известны как разработчики на стороне клиента. Они работают над внешним видом и ощущением веб-приложения. Вы, наверное, не раз слышали эти модные аббревиатуры UX и UI, которые как раз обозначают User Experience (пользовательский опыт) и User Interface (пользовательский интерфейс), за которые ответственен фронтенд разработчик. Back-End разработчики используют языки программирования и реляционные базы данных для интеграции внешнего интерфейса с внутренним. Со временем наборы умений фронт-энда и бэк-энда разработчиков пересекались, и в настоящее время индустрия предпочитает разработчиков с мастерством в обоих. Такие эксперты называются Full Stack Developers, и они обладают навыками как Front-End, так и Back-End разработки. Давайте рассмотрим навыки, необходимые для того, чтобы стать веб-разработчиком. 1. Графика или пользовательский интерфейс (UI) Знание графики или пользовательского интерфейса имеет большое значение для понимания эстетического аспекта веб-дизайна. Это позволяет выявлять и устранять проблемы совместимости между веб-браузерами при отображении страниц. 2. HTML, CSS, JavaScript Это строительные блоки веб-разработки. Они позволяют разработчику создавать структуру, стиль и содержание веб-сайта. Дополнительное знание сторонних библиотек, таких как jQuery, LESS, Angular и React JS, крайне желательно. HTML определяет структуру представления страниц. CSS обеспечивает контроль над макетом, позволяя создавать точные секционные модули, а также позволяет разработчикам настраивать макет страницы, цвета, шрифты и добавлять эффекты анимации. JavaScript является продвинутым по своей природе, что помогает сделать веб-страницу более интерактивной. Он предлагает изысканные функции, которые помогают сделать веб-страницы более отзывчивыми. Зная DOM, JSON позволяет вам манипулировать Javascript кодом. 3. CMS Система управления контентом (Content Management Systems) - это приложение, которое позволяет пользователям эффективно публиковать и управлять контентом веб-сайта. Это интуитивно понятный пользовательский интерфейс, который помогает в создании и изменении содержимого веб-страницы. Несмотря на то, что здесь не требуется опыта в программировании бэкэнда, знание HTML и CSS необходимо. В зависимости от используемой CMS вы можете реализовать расширенные функции, установив плагины и расширения. Wordpress, Joomla, Drupal, Magento, Laravel, Typo3, Serendipity, Chamilo - вот некоторые из них, которые стоит добавить в вашу базу знаний. 4. UX Пользовательский опыт не имеет прямого отношения к знаниям о дизайне; напротив, это относится к аналитическому и техническому пониманию того, как должно работать веб-приложение. Это понимание факторов, которые удерживают пользователей на сайте, помогают им найти то, что они ищут, и оптимизируют поддерживаемые функции. 5. Языки программирования Языки программирования помогают внедрять интерактивные функции на сайт. Они несут ответственность за возможность хранить, обновлять, манипулировать и получать доступ к данным из базы данных в пользовательский интерфейс. Для веб-разработки основными языками программирования, с которыми нужно ознакомиться, являются Java, Javascript, .NET, PHP, Perl, Python, C, C ++ и Ruby. Выбор языка программирования в основном зависит от программного стека и типа разрабатываемого проекта. Про выбор языка программирования можно прочитать в нашей статье. 6. СУБД Веб-приложения должны хранить данные, с возможностью для доступа к ним, и когда это необходимо, что требует хорошего знания системы управления реляционными базами данных. Веб-разработчик должен хорошо понимать его синтаксис для создания, обновления, манипулирования и доступа к базе данных до ее оптимального уровня. Он должен понимать разницу между реляционной и нереляционной базой данных наряду со знанием XML/JSON. Понимание особенностей реляционной базы данных, веб-хранилища, знание NoSQL и связей с базами данных укрепляют карьеру веб-разработчика. 7. Программный стек Это совокупность программных подсистем, которые вместе работают вместе, чтобы создать платформу для поддержки приложения без необходимости в дополнительном программном обеспечении. Говорят, что приложение «работает поверх» определенного программного стека. Независимо от программного стека, всегда существует сходство в архитектуре программного стека. Примеры программных стеков для веб-разработки: LAMP [Linux | Apache | MySQL | PHP] MERN [MongoDB | Express | React | Node.js] MEAN [MongoDB | Express | Angular | Node.js] Понимание стека программного обеспечения требуется при работе над проектом, поскольку оно дает лучшее техническое представление о разрабатываемом программном обеспечении. Вы можете оптимизировать производительность, предлагать изменения и устранять технические проблемы. 8. SEO Поисковая оптимизация (Search Engine Optimization) не может считаться обязательным требованием для веб-разработчика. Но знания в этой области помогут вам с самого начала структурировать веб-сайт как оптимизированный для SEO. Это, в конечном счете, облегчит работу профессионалов SEO, но более того, веб-приложение имеет больше шансов на успех. Итог Наличие всех вышеперечисленных навыков дает вам возможность выбора из нескольких карьерных возможностей. На сегодняшнем рынке веб-разработчики должны иметь более одного определенного набора навыков.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59