По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
При внедрении культуры DevOps, вне зависимости от инфраструктуры организации, программного инструменты имеют решающее значение. В этой статье расскажем о лучших инструментах управления конфигурацией в DevOps. Но давайте сначала выясним, что такое DevOps. Что такое DevOps, что нужно знать и сколько получают DevOps - специалисты? Что такое DevOps? DevOps происходит из интеграции команд разработчиков (Dev) и специалистов по информационно-техническому обслуживанию(Ops), чтобы обеспечить ценность для клиентов и создать гибкость в разработке программного обеспечения. DevOps сосредоточен на том, как люди работают и сотрудничают, делясь своими мыслительными процессами и приоритетами, чтобы ускорить разработку программного обеспечения. Как культура, основная идея DevOps заключается в оптимизации функций и эффективности задействованных команд независимо от используемых инструментов. Но как началась эта единая разработка? Ранее в жизненном цикле разработки программного обеспечения были разработчики, чья работа заключалась в написании кода, как указано клиентами, без настройки и обслуживания среды для требуемого программного продукта. Команда информационно-технического обслуживания выполняла производственные операции и задачи технического обслуживания, переживая все кошмары, связанные с производственным этапом. Представьте себе управление программным продуктом, в разработке которого вы не участвовали! Тяжело, да? Команда Ops несла бремя реализации ошибок, управления зависимостями инфраструктуры и, скорее, проблем, связанных с производственной средой программного обеспечения. Чтобы устранить этот пробел, был придуман DevOps – тандем людей, задач и всех сквозных процессов, необходимых для предоставления клиентам тщательно разработанного продукта. Почему DevOps так важен? Когда команды в любой среде разработки правильно интегрируют методы DevOps, такие как непрерывная интеграция и управление конфигурацией, компании получают следующие преимущества: Более короткие циклы выпуска приложений DevOps служит для поддержки готовой к развертыванию базы кода, где в любой момент команда DevOps может запускать доступные версии программного обеспечения без сбоев продукта. CI/CD-конвееры, со всей автоматизацией и тестами, обеспечивают последовательную запуск стабильного программного продукта в производство, что позволяет разработчикам добиться более коротких циклов выпуска. Наглядность процессов разработки Выявление дефектов программирования, обнаружение угроз безопасности, инициирование откатов и даже реагирование на инциденты могут быть затруднены, когда среда разработки подобна черному ящику. Более короткие циклы выпуска и непрерывный мониторинг в DevOps приводят к большей видимости всех операций. Что такое управление конфигурацией в DevOps? Управление конфигурацией - это автоматизация значительных и повторяющихся действий в ИТ-среде. Управление конфигурацией решает задачи, которые должны быть выполнены на тысячах машин. Такие задачи могут включать установку, модернизации и обновление программного обеспечения, управление исправлениями, обеспечение безопасности, управление пользователями и т.д. С появлением контейнерных технологий и других усовершенствований инфраструктуры, системные администраторы считают, что настройка ИТ-сред без средств автоматизации является сложной задачей. К счастью, существуют средства управления конфигурацией для создания и оптимизации сред времени выполнения. Инструменты управления конфигурацией в DevOps предоставляют необходимую инфраструктуру через сценарии/Инфраструктуру как код. Рассмотрим следующие широко используемые средства управления конфигурацией. 1. Ansible Решение Ansible автоматизирует настройку инфраструктуры, развертывание приложений и выделение ресурсов облачных сред, используя модель услуг «Инфраструктура как код». Ansible - это полезный инструмент, который инженеры DevOps могут использовать для автоматизации управления инфраструктурой, приложениями, сетями и контейнерной средой. Инженеры широко используют этот инструмент для автоматизации и настройки серверов. Это средство масштабирует повторяющиеся задачи в администрировании инфраструктуры с помощью определенных плэйбуков. В данном случае плэйбук представляет собой простой файл сценария на YAML, детализирующий действия, выполняемые механизмом автоматизации Ansible. С помощью автоматизации Ansible сисамдины могут создавать группы машин для выполнения определенных задач и управлять работой машин в производственных средах. Anible используют такие известные компании, как Udemy, Alibaba Travels, Tokopedia. Особенности Ansible Tower, платформа в рамках Ansible, является панелью управления визуализацией для всей ИТ-среды. С помощью управления доступом на основе ролей (RBAC) область Ansible может создавать пользователей и управлять разрешениями для сред. Технология Ansible поддерживает как локальные конфигурации, так и мультиоблачные инфраструктуры. Подробнее про Ansible 2. Puppet Puppet - это еще одна платформа с открытым исходным кодом, подходящая для обеспечения отказоустойчивой инфраструктуры. Инженеры DevOps могут использовать Puppet для настройки, развертывания, запуска серверов и автоматизации развертывания приложений на настроенных серверах. С помощью Puppet можно устранять операционные риски и риски безопасности в ИТ-среде путем обеспечения постоянного соответствия нормативным требованиям. Она включает автоматизацию инфраструктуры Windows, управление исправлениями и управляемые операции приложений. Тысячи компаний, включая Google, Cisco и Splunk, используют Puppet для управления конфигурацией. Особенности Высокая расширяемость, поддержка нескольких инструментов для разработчиков и API. Puppet включает Bolt, мощный оркестратор задач для автоматизации ручных задач. Puppet хорошо интегрируется с Kubernetes и Docker. Подробнее про Puppet 3. Chef Chef, как средство в DevOps позволяет выполнять задачи управления конфигурацией на серверах и других вычислительных ресурсах. Chef для управления инфраструктурой использует агентов, таких как Chef Infra, для автоматизации конфигурации инфраструктуры. Использование Chef в процессах автоматизации просто. С помощью нескольких щелчков мыши можно включить и запустить несколько узлов. Для управления конфигурацией команды DevOps создают «рецепты». Рецепты содержат описание ресурсов и пакетов программных обеспечений, необходимых для настройки серверов. Chef использует Cookbooks, Chef servers и Nodes в качестве основных компонентов для настройки и автоматизации. Ведущие компании как Facebook, Slack и Spotify, использовали Chef в своих экосистемах. Особенности Chef - платформа автоматизации на базе Агента. Chef обрабатывает инфраструктуру как код. Поддерживает все операционные системы и интегрируется с любой облачной технологией. Chef обладает аналитикой Chef для мониторинга изменений, происходящих на сервере Chef. Подробнее про Chef 4. Saltstack Saltstack или просто соль - это масштабируемый инструмент управления конфигурацией и оркестровки. Команды DevOps используют Saltstack для управления ИТ-средами как центры обработки данных, посредством управляемой событиями оркестровки и удаленного выполнения конфигураций. Структура управления конфигурацией Salt использует состояния и файлы конфигурации, чтобы показать, как выполняется выделение и развертывание ИТ-инфраструктуры. Файлы конфигурации описывают устанавливаемые пакеты инфраструктуры, запускаемые или останавливаемые службы, пользователей и процессы создания пользователей, а также многие другие необходимые задачи по выделению ИТ-среды. Особенности Платформа Salt Cloud для настройки ресурсов в облаке. Поддерживает управление узлами как на основе агентов, так и без агентов. Поддерживает операционные системы * NIX и Windows. 5. CFEngine CFEngine - это высокомасштабируемая платформа для автоматизированного управления ИТ-инфраструктурой. С помощью CFEngine команды могут выполнять физическое и виртуальное назначение ресурсов инфраструктуры, управление исправлениями, управление доступом, управление пользователями и безопасностью системы. Автономные агенты CFEngine постоянно работают для непрерывного мониторинга, устранения неполадок, обновления и восстановления ИТ-инфраструктуры. Непрерывная проверка системы и автоматизированное восстановление в CFEngine гарантирует надежность и согласованность инфраструктуры. Особенности Высокая гибкость из-за схемы конфигурации «написать один раз использовать повторно». Имеет CFEngine Enterprise Mission Portal, центральную панель для мониторинга ИТ-систем в режиме реального времени. Использование облегченных агентов автоматизации в платформе WebScale для настройки нескольких узлов и управления ими. Заключение Лучший способ найти инструменты для ваших потребностей - попробовать их. То, что работает для других, может не сработать для вас, поэтому попробуйте их чтобы увидеть, как работает, как помогает вашей организации обеспечить согласованность и безопасность конфигурации.
img
Session Border Controller (контроллер граничных сессий) - сетевое устройство, которое может обеспечить безопасность VoIP, а так же соединять несовместимые (разнородные) сигнальные протоколы и медиа потоки, поступающие от различных устройств. SBC – устройства используются в корпоративных сетях и сетях провайдеров услуг и, как правило, развертываются на границе сети (точка входа провайдера в корпоративный контур). В основном, несмотря на способность устройств поддерживать H.323, SCCP и прочие, фокус работы SBC сделан на обеспечении безопасности SIP – протокола, а так же сопряжении различных версий SIP. Основная идея SBC защищает от атак сеть телефонии и соответствующие сервера, выполняя роль B2BUA (back-to-back user agent), схожую по типу работы с SIP прокси – сервером. Контроллер терминирует каждую сессию (завершает), а затем заново ее инициирует, выступая в роли агентского сервера UAS (User Agent Server) и агентским клиентом UAC (User Agent Client), работая с каждым из «плеч» вызова по отдельности. На базе собственных мощностей SBC реализует списки контроля доступа ACL, ограничение DDOS атак, а так же анализ пакетов на предмет искажения информации с целью нанести ущерб. Анализируя SIP, SBC анализирует заголовки и поле полезной нагрузки. Особенно это актуально в SDP – сообщениях, к которым может применяться множество правил модификации. Помимо сигнальной информации, SBC обрабатывает RTP потоки, тем самым, обеспечивает не только шифрование медиа, но и выполняет функции транскодинга (преобразования потока из одного кодека в другой) в случаях, когда две стороны SIP – коммуникации не могут согласовать параметры передачи данных в сообщениях SDP. Кстати, на SBC обычно реализуют так называемый SIP forking, который позволяет дублировать сессию на третье устройство, например, такое как система записи телефонных разговоров. В современных версиях SBC, сигнальная информация и потоки изолированы друг от друга (с точки зрения обработки устройством) – это обеспечивает высокие параметры масштабирования. Давайте рассмотрим на примеры схемы ниже принцип работы SBC:
img
Архитектуры х64 и х86 являются одними из наиболее широко используемых типов архитектур системы команд (АСК или ISA – Instruction Set Architecture), созданными Intel и AMD. ISA определяет поведение машинного кода и то, как программное обеспечение управляет процессором. ISA – это аппаратный и программный интерфейс, определяющий, что и как может делать ЦП. Прочитав эту статью, вы узнаете разницу между архитектурами х64 и х86. Что из себя представляет архитектура х86? х86 – это тип ISA для компьютерных процессоров, разработанный Intel в 1978 году. Архитектура х86 основана на микропроцессоре Intel 8086 (отсюда и название) и его модификации 8088. Изначально это была 16-битная система команд для 16-битных процессоров, а позже она выросла до 32-битной системы команд. Количество битов показывает, сколько информации ЦП может обработать за цикл. Так, например, 32-разрядный ЦП передает 32 бита данных за тактовый цикл. Благодаря своей способности работать практически на любом компьютере, от обычных ноутбуков до домашних ПК и серверов, архитектура х86 стала достаточно популярной среди многих производителей микропроцессоров. Наиболее значительным ограничением архитектуры х86 является то, то она может обрабатывать максимум 4096 Мб ОЗУ. Поскольку общее количество поддерживаемых комбинаций равно 232 (4 294 967 295), то 32-разрядный процессор имеет 4,29 миллиарда ячеек памяти. В каждой ячейке хранится 1 байт данных, а в сумме это примерно 4 Гб доступной памяти. На сегодняшний день термин х86 обозначает любой 32-разрядный процессор, способный выполнять систему команд х86. Что из себя представляет архитектура х64? х64 (сокращение от х86-64) – это архитектура системы команд, расширенная до 64-битного кода. В ее основе лежит архитектура х86. Впервые она была выпущена в 2000 году. Она представляла два режима работы – 64-битный режим и режим совместимости, который позволяет пользователям запускать 16-битные и 32-битные приложения. Поскольку вся система команд х86 остается в х64, то старые исполняемые файлы работают практически без потери производительности. Архитектура х64 поддерживает гораздо больший объем виртуальной и физической памяти, чем архитектура х86. Это позволяет приложениям хранить в памяти большие объемы данных. Кроме того, х64 увеличивает количество регистров общего назначения до 16, обеспечивая тем самым дополнительную оптимизацию использования и функциональность. Архитектура х64 может использовать в общей сложности 264 байта, что соответствует 16 миллиардам гигабайт (16 эксабайт) памяти. Гораздо большее использование ресурсов делает эту архитектуру пригодной для обеспечения работы суперкомпьютеров и машин, которым требуется доступ к огромным ресурсам. Архитектура х64 позволяет ЦР обрабатывать 64 бита данных за тактовый цикл, что намного больше, чем может себе позволить архитектура х86. х86 VS х64 Несмотря на то, что оба эти типа архитектуры основаны на 32-битной системе команд, некоторые ключевые отличия позволяют их использовать для разных целей. Основное различие между ними заключается в количестве данных, которые они могут обрабатывать за каждый тактовый цикл, и в ширине регистра процессора. Процессор сохраняет часто используемые данные в регистре для быстрого доступа. 32-разрядный процессор на архитектуре х86 имеет 32-битные регистры, а 64-разрядный процессор – 64-битные регистры. Таким образом, х64 позволяет ЦП хранить больше данных и быстрее к ним обращаться. Ширина регистра также определяет объем памяти, который может использовать компьютер. В таблице ниже продемонстрированы основные различия между системами команд архитектур х86 и х64. ISA х86 х64 Выпущена Выпущена в 1978 году Выпущена в 2000 году Создатель Intel AMD Основа Основана на процессоре Intel 8086 Создана как расширение архитектуры х86 Количество бит 32-битная архитектура 64-битная архитектура Адресное пространство 4 ГБ 16 ЭБ Лимит ОЗУ 4 ГБ (фактически доступно 3,2 ГБ) 16 миллиардов ГБ Скорость Медленная и менее мощная в сравнении с х64 Позволяет быстро обрабатывать большие наборы целых чисел; быстрее, чем х86 Передача данных Поддерживает параллельную передачу только 32 бит через 32-битную шину за один заход Поддерживает параллельную передачу больших фрагментов данных через 64-битную шину данных Хранилище Использует больше регистров для разделения и хранения данных Хранит большие объемы данных с меньшим количеством регистров Поддержка приложения Нет поддержки 64-битных приложений и программ. Поддерживает как 64-битные, так и 32-битные приложения и программы. Поддержка ОС Windows XP, Vista, 7, 8, Linux Windows XP Professional, Windows Vista, Windows 7, Windows 8, Windows 10, Linux, Mac OS   Функции Каждая архитектура системы команд имеет функции, которые ее определяют и дают некоторые преимущества в тех или иных вариантах использования. Следующие списки иллюстрируют функции х64 и х86: х86 Использует сложную архитектуру со сложным набором команд (CISC-архитектуру). Сложные команды требуют выполнения нескольких циклов. х86 имеет больше доступных регистров, но меньше памяти. Разработана с меньшим количеством конвейеров обработки запросов, но может обрабатывать сложные адреса. Производительность системы оптимизируется с помощью аппаратного подхода – х86 использует физические компоненты памяти для компенсации нехватки памяти. Использует программную технологию DEP (Data Execution Prevention – Предотвращение выполнения кода). х64 Имеет возможность обработки 64-битных целых чисел с преемственной совместимость для 32-битных приложений. (Теоретическое) виртуальное адресное пространство составляет 264 (16 эксабайт). Однако на сегодняшний день в реальной практике используется лишь небольшая часть из теоретического диапазона в 16 эксабайт – около 128 ТБ. х64 обрабатывает большие файлы, отображая весь файл в адресное пространство процессора. Быстрее, чем х86, благодаря более быстрой параллельной обработке, 64-битной памяти и шине данных, а также регистрам большего размера. Поддерживает одновременную работу с большими файлами в нескольких адресных пространствах. Кроме того, х64 одновременно эмулирует две задачи х86 и обеспечивает более быструю работу, чем х86. Загружает команды более эффективно. Использует программную технологию DEP (Data Execution Prevention – Предотвращение выполнения кода). Применения Из-за того, что эти две архитектуры имеют различные функции и имеют различия в доступе к ресурсам, скорости и вычислительной мощности, каждая архитектура используется для различных целей: х86 Многие компьютеры по всему миру по-прежнему основаны на операционных системах и процессорах х86. Используется для игровых консолей. Подсистемы облачных вычислений по-прежнему используют архитектуру х86. Старые приложения и программы обычно работают на 32-битной архитектуре. Лучше подходит для эмуляции. 32-битный формат по-прежнему более предпочтителен при производстве аудио из-за возможности совмещения со старой аудиотехникой. х64 Все большее число ПК используют 64-разрядные процессоры и операционные системы на основе архитектуры х64. Все современные мобильные процессоры используют архитектуру х64. Используется для обеспечения работы суперкомпьютеров. Используется в игровых консолях. Технологии виртуализации основаны на архитектуре х64. Она лучше подходит для новых игровых движков, так как она быстрее и обеспечивает лучшую производительность. Ограничения И хотя обе ISA имеют какие-то ограничения, х64 – все же более новый и более совершенный тип архитектуры. Ниже приведен список ограничений для обоих типов архитектур: х86 Имеет ограниченный пул адресуемой памяти. Скорость обработки ниже в сравнении с архитектурой х64. Фирмы-поставщики больше не разрабатывают приложения для 32-битных операционных систем. Для современных процессоров требуется 64-битная ОС. Все устройства в системе (видеокарты, BIOS и т.д.) совместно используют доступную оперативную память, оставляя еще меньше памяти для ОС и приложений. х64 Она не работает на устаревших устройствах. Ее высокая производительность и скорость, как правило, потребляют больше энергии. Маловероятно, что 64-разрядные драйверы будут доступны для старых систем и оборудования. Некоторое 32-разрядное программное обеспечения не полностью совместимо с 64-разрядной архитектурой. Как проверить, на какой архитектуре работает ваш компьютер – х64 или х86? Если вы купили ПК в последние 10-15 лет, то он с большой долей вероятности работает на архитектуре х64. Для того, чтобы проверить, является ли ваш компьютер 32-разрядным или 64-разрядным, выполните следующие действия: Шаг 1: Откройте настройки В Windows 10 нажмите на клавишу Windows и щелкните значок «Settings» («Настройки»). Шаг 2: Откройте параметры системы В меню настроек выберите пункт «System» («Система»). Шаг 3: Найдите характеристики устройства Выберите пункт «About» («О программе») на левой панели и в разделе «Device specifications» («Характеристики устройства») найдите тип системы: В приведенном выше примере система представляет собой 64-разрядную операционную систему с процессором на базе архитектуры х64. Через командную строку это можно сделать быстрее: wmic OS get OSArchitecture Ну а для Linux нужно выполнить команду: uname -m Что лучше – х86 или х64? Несмотря на то, что и у х86, и у х64 есть свои преимущества, будущее не терпит ограничений, а это значит, что х86 практически перестанет использоваться или будет полностью выведена из использования. К тому же, х64 намного быстрее, может выделять больше оперативной памяти и имеет возможности параллельной обработки через 64-битную шину данных. Это делает ее лучшим вариантом при выборе между двумя типами архитектуры. Если стоит выбор, какую ОП установить, то всегда лучше отдать предпочтение в пользу 64-разрядной ОС, поскольку она может запустить как 32-разрядное, так и 64-разрядное программное обеспечение. А вот ОС на базе х86 работает только с 32-разрядным программным обеспечением. В общем и целом, х64 гораздо более эффективна, чем х86, поскольку использует всю установленную оперативную память, предоставляет больше места на жестком диске, имеет более высокую скорости шины и общую лучшую производительность. Заключение Данная статья показала различия между архитектурами системы команд х86 и х64, а также описала их функции, возможные применения и ограничения. Примите во внимание все особенности каждой ISA и сделайте выбор в пользу наиболее вам подходящей.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59