По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет! Сегодня расскажем про то, как настроить Call Hunting в Cisco Unified Communications Manager (CUCM). Call Hunting позволяет распределять звонки на телефоны, в необходимой последовательности. Теория Call Hunting содержит следующие компоненты: Directory Numbers (DNs) и Voicemail порты: конечные назначения, присваиваются Line Groups; Line Groups: присваиваются Hunt List’у, к одному Hunt листу можно присвоить больше одной Line группы. В Line группе могут быть настроены различные алгоритмы поиска (Top-Down, Circular, Longest Idle, Broadcast) и другие настройки; Hunt Lists: Представляет собой упорядоченный список Line групп. Звонок, проходящий через систему Call Hunting’а направляется в первую Line группу в Hunt листе. Если никто не может ответить в этой Line группе, то звонок может быть возвращен в Hunt List, где будет направлен в другую Line группу. Процесс может повторяться до тех пор, пока на звонок не ответят, закончатся Line группы или звонящий повесит трубку; Hunt Pilots: Hunt Pilot присваивается Hunt List’у, и может быть уникальным DN или ТфОП номером. После набора этого номера начинается процесс Call Hunting’а; Визуально это можно представить так: Настройка Call Hunting Первым делом создаем Line Group: Для начала необходимо убедиться, что созданы Directory Numbers, присвоенные телефонным аппаратам; После этого в CM Administration переходим во вкладку Call Routing → Route/Hunt → Line Group, и в открывшемся окне нажимаем Add New; Здесь в поле Line Group Name указываем называние для Line группы, ниже в поле RNA Reversion Timeout указываем сколько секунд будет звонить каждый телефон в группе, перед тем как будет достигнуто значение No Answer; В выпадающем списке Distribution Algorithm выбираем алгоритм распределения звонков: Top Down – каждый новый вызов начинается с номера который стоит первым в списке; Circular – каждый новый вызов начинается с номера, который в списке был после номера, который принял предыдущий вызов; Broadcast – все телефоны звонят одновременно; Longest Idle Time – звонок направляется на телефон, который дольше всех был неактивен); В меню Hunt Options выбираем, что будет происходить со звонком при достижении определенного состояния (No Answer, Busy и Not Available); В поле Available DN/Route Partition выбираем номера, которые будут добавлены в группу, и в каком порядке будет происходить обзвон. Они будут отображаться в поле Secelted DN/Route Partition. Затем нажимаем Save; Затем создаем Hunt List: Переходим во вкладку Call Routing → Route/Hunt → Hunt List и нажимаем Add New; В поле Name указываем название листа; Выбираем CUCM группу в поле Cisco Unified Communications Manager Group. Значение по умолчанию – Default; Нажимаем Save, после чего на странице появится поле Hunt List Member Information; Нажимаем Add Line Group и добавляем в необходимом порядке Line группы, созданные ранее; Теперь, как вы могли догадаться, создаем Hunt Pilot :) Переходим во вкладку Call Routing → Route/Hunt → Hunt Pilot и нажимаем Add New. В поле Hunt Pilot указываем номер, на который будут поступать звонки; Если необходимо, то указываем Partition; В выпадающем меню Hunt List выбираем тот Hunt List, на который будут уходить звонки; В меню Call Forward Settings можно указать, куда отправлять вызов, если Call Hunting система не может его обработать (состояния No Answer и Busy);
img
В обычной корпоративной сети доступ к серверам из филиалов организации может осуществляться, чаще всего, подключением к серверам, расположенным в центральном офисе. Но при расположении серверной инфраструктуры в облаке параметры связи рабочих станций с серверами будут зависеть уже не от канала связи от каждого конкретного филиала до центрального офиса, а от канала связи всех отделений организации с ЦОД облачного провайдера, чьими услугами пользуется организация для формирования облачной инфраструктуры. Переход в облака поставил перед разработчиками ПО и сетевыми инженерами ряд новых условий, вызывающих задержку сигнала, которые им приходится учитывать для формирования качественного доступа к данным в облаке. Например, задержка длительностью 500мс приводит к снижению трафика Google на 20%, а задержка в 100мс сокращает продажи Amazon на 1%. Время задержки может быть очень важным аспектом во время работы с виртуальными рабочими столами (VDI), потоковым вещанием, трейдингом, передовыми web-сервисами, базами данных, терминальными приложениями. Но задержка не столь критична для таких сервисов как электронная почта или работа с документами. QoS и SLA Существует проблема обеспечения необходимого качества обслуживания (QoS). Разные виды трафика имеют различные требования к рабочим характеристикам сети. Чувствительность видов трафика была взята из и показана в таблице 1 Таблица 1. Чувствительность различных приложений сетевым характеристикам Тип трафика Уровень чувствительности к сетевым характеристикам Полоса пропускания Потери Задержка Джиттер Голос Очень низкий Средний Высокий Высокий Электронная коммерция Низкий Высокий Высокий Низкий Транзакции Низкий Высокий Высокий Низкий Электронная почта Низкий Высокий Низкий Низкий Telnet Низкий Высокий Средний Низкий Поиск в сети "от случая к случаю" Низкий Средний Средний Низкий Постоянный поиск в сети Средний Высокий Высокий Низкий Пересылка файлов Высокий Средний Низкий Низкий Видеоконференция Высокий Средний Высокий Высокий Мультикастинг Высокий Высокий Высокий Высокий Рекомендации МСЭ-Т по обеспечению QoS для сетей описываются в рекомендациях Y.1540 - стандартные сетевые характеристики для передачи пакетов в сетях IP, и Y.1541 нормы для параметров, определенных в Y.1540. Данные рекомендации важны для всех участников сети: провайдеров и операторов, пользователей и производителей оборудования. При создании оборудования, планировании развертывания и оценке сетей IP, оценка качества функционирования сети все будут опираться на соответствие характеристик требованиям потребителей. Основные характеристики, рассматриваемые в рекомендации Y.1540: производительность сети; надежность сети/сетевых элементов; задержка; вариация задержки (jitter); потери пакетов. Подробнее о данных характеристиках следует прочитать в вышеназванных рекомендациях. В таблице 2 указаны нормы на определенными в Y.1540 характеристики и распределены по классам качества обслуживания (QoS). Таблица 2 - Нормы для характеристик сетей IP с распределением по классам QoS Сетевые характеристики Классы QoS 0 1 2 3 4 5 Задержка доставки пакета IP, IPTD 100 мс 400 мс 100 мс 400 мс 1 с Н Вариация задержки пакета IP, IPDV 50 мс 50 мс Н Н Н Н Коэффициент потери пакетов IP, IPLR 1х10 3 1х10 3 1х10 3 1х10 3 1х10 3 Н Коэффициент ошибок пакетов IP, IPER 1х10 4 1х10 4 1х10 4 1х10 4 1х10 4 Н Примечание: Н не нормировано. Рекомендация Y.1541 устанавливает соответствие между классами QoS и приложениями: Класс 0 приложения реального времени, чувствительные к джиттеру, характеризуемые высоким уровнем интерактивности (VoIP, видеоконференции); Класс 1 приложения реального времени, чувствительные к джиттеру, интерактивные (VoIP, видеоконференции); Класс 2 транзакции данных, характеризуемые высоким уровнем интерактивности (например, сигнализация); Класс 3 транзакции данных, интерактивные; Класс 4 приложения, допускающие низкий уровень потерь (короткие транзакции, массивы данных, потоковое видео) Класс 5 традиционные применения сетей IP. Таким образом некоторые из облачных сервисов вполне могут попадать в классы 0 и 1, а значит следует учитывать время задержки и стараться сделать так, чтобы она не превышала 100 мс. Задержки в сетях Подключение к облаку через VPN аналогично подключению к центральному офису организации по VPN, за исключением лишь того, что если в обычной корпоративной сети все филиалы организации подключались к центральному офису, то теперь подключение филиалов и центрального офиса в том числе будет осуществляться к ЦОД облачного провайдера. Для проверки задержки в большинстве ОС используется команда ping, а для проверки пути прохождения пакета команда tracert, которые подробнее рассмотрим ниже. Предположим, что домашняя сеть является подобием корпоративной сети малого предприятия. В таблице в приложении А собраны данные из статьи с указанием расположения ЦОД. Воспользуемся этими данными чтобы проверить задержку сигнала от текущей домашней сети, расположенной в городе Москва, без учета VPN, до web-сервера некоторых компаний, владеющих, ЦОД, расположенных в разных городах, тем самым проверяя разницу в задержке в зависимости от расположения ЦОД облачного провайдера. Для проверки задержки воспользуемся "Командной строкой" Windows и командами ping и tracert. Команда ping используется для проверки целостности и качества соединения в сети на основе протоколов TCP/IP. Команда tracert строит маршрут через коммутационные узлы между компьютером и конечным сервером и выводит их IP-адреса и время задержки. На рисунках 1 и 2 представлена системная справка по командам, соответственно, tracert и ping. Проведем тест проверки задержки до домена DataLine dtln.ru, расположенного ближе всего к домашней сети (рисунки 3 и 4). Как видно из результатов на рисунке 5.3, было передано и получено 4 пакета объемом 32 байта. Время обмена одним пакетом составило 1 миллисекунду. Команда tracert вывела следующие данные: 1, 2, 3 - номер перехода; <1 мс <1 мс <1 мс время ответа для 3-х попыток (в данном случае все попытки менее 1 мс); 185.3.141.232 IP-адреса (в данном случае IP-адрес домена dtln.ru) Согласно проверке данного IP на сайте 2ip.ru, данный домен базируется по тому же адресу на карте, что и указано в таблице в приложении Б. Таким образом можно сделать вывод, что web-сервер большинства компаний из списка вероятнее всего находится на территории одного из их ЦОД, но даже если и нет, то позволяет сделать выводы о доступности ресурса. Аналогично проверим ping для остальных компаний, результаты представим на рисунке 5.5. В качестве опорного времени задержки будет использовано среднее и максимальное время приема-передачи. Из данных рисунка 5 можно сделать вывод, что среднее значение времени задержки в пределах Москвы из сети, также находящейся в пределах Москвы, чаще всего не превышает 10мс. Можно сравнить данные значения с ping до серверов Amazon Web Services в разных регионах с сайта cloudping.info (рисунок 6). VPN без шифрования теоретически позволил бы сократить эту задержку в связи с использованием "прямого туннеля" между "офисом" и ЦОД. Шифрование будет вносить уже свою задержку, проверить которую в данных условиях нет возможности. В локальных сетях корпоративной сети и сети ЦОД задержка исчисляется в микросекундах. В сети ЦОД предъявляются высокие требования к быстродействию сети, современные решения Ethernet для ЦОД должны быть широкополосными и поддерживать скорости 10, 25, 40, 50, 100 Гбит/с, обеспечивать низкие задержки до 1-2 мкс для связи серверов (через три коммутатора), и многие другие. Скорость интернет-канала Передача видео через сети связи, будь то видео с камер наблюдения или же видеоконференции, являются одними из самых требовательных с скорости передачи данных. Если для работы с документами может быт достаточно скорости в 100 Кбит/с, то для передачи видео понадобится уже примерно 2 Мбит/с. Для некоторых приложений, таких как IP-телефония, желательно, чтобы уровень задержек был низким, а мгновенная пропускная способность канала была больше определенного порогового значения: не ниже 24 Кбит/с для ряда приложений IP-телефонии, не ниже 256 Кбит/с для приложений, обрабатывающих видеопоток в реальном времени. Для некоторых приложений задержки не так критичны, но, с другой стороны, желательна высокая пропускная способность, например, для передачи файлов. Например, компания Ivideon предлагает услуги облачного видеонаблюдения, и у них на сайте даются следующие требования к интернет-каналу для разного качества видеопотока. Данные представлены в таблице 3. Таблица 3 Требования к интернет-каналу для одной камеры видеонаблюдения при разных разрешения при частоте 25 кадров/сек Разрешение Качество изображения Рекомендуемая скорость 1280х720 (1Mpx) /25к/с 1 Мбит/с 1920x1080 (2Mpx) /25к/с 2 Мбит/с 2048x1536 (3Mpx) /25к/с 2 Мбит/с 2592x1728 (4Mpx) /25к/с 2 Мбит/с Но для работы с терминальными сессиями достаточно канала в 128-256 Кбит/с на пользователя. Для 50 пользователей понадобится 6.25 Мбит/с. Компания 1cloud.ru при выборе ширины канала связи предлагает скорость соединения в диапазоне от 10 до 100 Мбит/с для доступа к виртуальному серверу. Внутри облака сетевые соединения между виртуальными машинами имеют пропускную способность в 1 Гбит/с. RDP-сессия Для теста потребления трафика при использовании удаленного подключения RDP был проведен эксперимент. Два персональных компьютера находятся в одной локальной сети и подключены к интернету. Один выступает сервером удаленного доступа, второй подключается к нему посредством встроенной в Windows программы "Подключение к удаленному рабочему столу" по протоколу RDP. На сервере запускается видео в интернете. Для захвата трафика и анализа используется ПО Wireshark Параметры подключения: размер удаленного рабочего стола 1920х1080 глубина цвета 15 бит выбранная скорость соединения 56 Кбит/с дополнительные возможности отключены (рисунок 7) Wireshark программа для захвата и анализа сетевого трафика. Данная программа работает с подавляющим большинством известных протоколов, имеет понятный и логичный графический интерфейс, и мощнейшую систему фильтров. Во время подключения к удаленному рабочему столу программа замеряла отправленные и поступившие пакеты данных. Эти пакеты были отфильтрованы по IP-адресу сервера, а также по протоколу RDP. Интерфейс программы представлен на рисунке 8. График ввода/вывода данных по IP-адресу сервера по протоколу RDP представлен на рисунке 9. На графике на рисунке 9 видно два "всплеска" данных, т.е. две сессии подключения к серверу. Во время первой сессии проводилась работа с тяжеловесным графическим приложением. Во время второй сессии было включено видео, затем производился web-серфинг в браузере машины с некоторыми графическими материалами на странице. Как видно по графику, в пиковый момент была передача данных 5.5 Мбит/с. В последние моменты web-серфинга 0,65 Мбит/с. Таким образом можем сделать вывод, что протокол RDP не укладывается в ранее заявленный диапазон до 128 Кбит/с. Однако стоит учитывать, что RDP-сессия изначально очень требовательна к сети и является, по сути, передачей видеотрафика. Общедоступной информации в сети для анализа влияния облачной инфраструктуры на сеть, по крайней мере в русскоязычном сегменте интернета, чрезвычайно мало. Исследований по теме облачных вычислений недостаточно для заключения результата, и, в основном, это анализы финансовых затрат или производительности серверов. Наиболее подходящей темой для дискуссий на тему влияния облачной инфраструктуры на сеть могут служить только качество обслуживания (QoS) и договор о предоставлении услуг SLA, но данные темы слишком обширны и требует более углубленного внимания, а вопросы, связанные с ними, требуют внимания соответствующих специалистов.
img
Всем привет! В сегодняшней статье, научим нашу IP-АТС на FreePBX 14 и Asterisk 13 запускаться автоматически, без необходимости подключения к ней и запуска вручную. Итак, вот вы скачали и установили последний доступный дистрибутив FreePBX 14 произвели какие-либо первичные настройки и сделали ребут. После того, как сервер перезагрузился, заходим на web-интерфейс и видим большую, страшную надпись Can Not Connect to Asterisk на красном фоне. Вероятно, сервис не запущен. Открываем консоль и даём команду service asterisk start и надпись исчезает. Всё, IP-АТС готова к работе. Но что же это получается - нам после каждого ребута нужно будет вручную запускать сервис Asterisk? Не очень радужная перспектива, согласитесь. Сейчас мы расскажем как это исправить. Итак, FreePBX, как и очень много других решений, использует в качестве инициализатора других демонов (процесс, который запускается автоматически и работает в фоновом режиме), системный менеджер systemd. Поэтому именно его конфигурацию относительно сервиса FreePBX, мы немножечко поправим. Для этого, создаём файл командой touch /etc/systemd/system/freepbx.service, а затем открываем его любым текстовым редактором и вносим туда следующие записи: Внимание!Приведённый ниже пример применялся в операционной системе CentOS 7, если вы используете Debian 8.1, в поле After= напишите mysql.service вместо mariadb.service [Unit] Description=FreePBX VoIP Server After=mariadb.service [Service] Type=oneshot RemainAfterExit=yes ExecStart=/usr/sbin/fwconsole start -q ExecStop=/usr/sbin/fwconsole stop -q [Install] WantedBy=multi-user.target А теперь просто скомандуем, чтобы этот скрипт запускался автоматически. Для этого пишем systemctl enable freepbx.service Всё, теперь наша IP-АТС будет сразу готова к работе после любой перезагрузки!
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59