По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитать лекцию №18 про модель Recursive Internet Architecture (RINA) можно тут. Итерационная модель также выводит концепции сетевых протоколов, ориентированных на соединение и без установления соединения, снова на свет. Протоколы, ориентированные на соединение, перед отправкой первого бита данных устанавливают сквозное соединение, включая все состояния для передачи значимых данных. Состояние может включать в себя такие вещи, как требования к качеству обслуживания, путь, по которому будет проходить трафик через сеть, конкретные приложения, которые будут отправлять и получать данные, скорость, с которой данные могут отправляться, и другая информация. Как только соединение установлено, данные могут быть переданы с минимальными издержками. Сервисы без установления соединения, с другой стороны, объединяют данные, необходимые для передачи данных, с самими данными, передавая оба в одном пакете (или блоке данных протокола). Протоколы без установления соединения просто распространяют состояние, необходимое для передачи данных по сети, на каждое возможное устройство, которому могут потребоваться данные, в то время как модели, ориентированные на установление соединения, ограничивают состояние только теми устройствами, которые должны знать об определенном потоке пакетов. В результате сбои в работе одного устройства или канала в сети без установления соединения можно устранить, переместив трафик на другой возможный путь, а не переделав всю работу, необходимую для построения состояния, для продолжения передачи трафика из источника в пункт назначения. Большинство современных сетей построены с использованием бесконтактных транспортных моделей в сочетании с ориентированными на подключение моделями качества обслуживания, контроля ошибок и управления потоками. Эта комбинация не всегда идеальна; например, качество обслуживания обычно настраивается по определенным путям, чтобы соответствовать определенным потокам, которые должны следовать этим путям. Такая трактовка качества обслуживания как более ориентированного на соединение, чем фактические управляемые потоки трафика, приводит к сильным разрывам между идеальным состоянием сети и различными возможными режимами сбоев.
img
Предыдущая статья этого цикла: Устранение неполадок коммутации Cisco Следующая статья этого цикла: Устранение неисправностей EtherChannel Case #1 На рисунке представлена топология, состоящая из трех коммутаторов, и между коммутаторами у нас есть два канала связи для резервирования. Коммутатор А был выбран в качестве корневого моста для VLAN 1. Когда вы имеете дело со связующим деревом, лучше всего нарисовать небольшую схему сети и записать роли интерфейса для каждого коммутатора (назначенного, не назначенного/альтернативного или заблокированного). Обратите внимание, что одним из каналов связи между коммутатором A и коммутатором C является интерфейс Ethernet (10 Мбит). Все остальные каналы — это FastEthernet. Мы используем команду show spanning-tree для проверки ролей интерфейса для коммутатора A и коммутатора C. Вы видите, коммутатор C выбрал свой интерфейс Ethernet 0/13 как корневой порт, а интерфейс FastEthernet 0/14 выбран в качестве альтернативного порта. Это не очень хорошая идея. Это означает, что мы будем отправлять весь трафик вниз по линии 10 Мбит, в то время как 100 Мбит не используется вообще. Когда коммутатор должен выбрать корневой порт он выберет его следующим образом: Выбирается интерфейс, который имеет самую низкую стоимость для корневого моста. Если стоимость равная, выбирается наименьший номер интерфейса. Обычно стоимость интерфейса Ethernet выше, чем Fast Ethernet, поэтому он должен выбрать интерфейс FastEthernet. Почему коммутатор выбрал интерфейс Ethernet 0/13? Мы видим, что интерфейс Ethernet 0/13 и FastEthernet0/14 имеют одинаковую стоимость. Затем коммутатор С выберет самый низкий номер интерфейса, который является interface Ethernet 0/13. После проверки конфигурации интерфейса, видно, что кто-то изменил стоимость интерфейса на 19 (по умолчанию для интерфейсов FastEthernet). SwitchC(config)#interface Ethernet 0/13 SwitchC(config-if)#no spanning-tree cost 19 Уберем настройки команды cost. После того, как мы убрали настройки команды cost, видно, что состояние порта изменилось. FastEthernet 0/14 теперь является корневым портом, а стоимость интерфейса Ethernet 0/13 равна 100 (это значение по умолчанию для интерфейсов Ethernet). Задача решена! Извлеченный урок: убедитесь, что интерфейс, которым вы хотите сделать в качестве корневого порта, имеет наименьшую стоимость пути. Case #2 Итак, новый сценарий. Все интерфейсы равны (FastEthernet). Коммутатор A является корневым мостом для VLAN 10, и после проверки ролей интерфейса мы находим следующее: Хм, интересно... Коммутатор A является корневым мостом, а FastEthernet 0/17 был выбран в качестве резервного порта. Это то, что вы видите каждый день. Коммутатор B выбрал корневой порт, а все остальные интерфейсы являются альтернативными портами. Мы ничего не видим на коммутаторе С. Мы видим, что Коммутатор A и Коммутатор B используют связующее дерево для VLAN 10. Коммутатор C, однако, не использует связующее дерево для VLAN 10. В чем может быть проблема? Конечно, неплохо проверить, работают ли интерфейсы на коммутаторе C или нет (но, конечно, это то, что вы уже изучили и сделали в первой статье). Интерфейсы выглядят хорошо. VLAN 10 активна на всех интерфейсах коммутатора C. Это означает, что остовное дерево должно быть активным для VLAN 10. Давайте еще раз посмотрим на это сообщение. Это говорит о том, что остовное дерево для VLAN 10 не существует. Есть две причины, по которым можно увидеть это сообщение: Для VLAN 10 нет активных интерфейсов. Spanning-дерево было отключено для VLAN 10. Мы подтвердили, что VLAN 10 активна на всех интерфейсах коммутатора C, поэтому, может быть, связующее дерево было отключено глобально? SwitchC(config)#spanning-tree vlan 10 Вот так выглядит лучше! Теперь связующее дерево включено для VLAN 10 и работает ... проблема решена! Эта проблема может показаться немного странной, но она появляется ее время от времени в реальном мире. Сценарий, который мы рассмотрели раньше, - это событие из реальной жизни, где клиент, которому поставщик беспроводной связи отключил остовное дерево для интерфейсов, которые подключаются к точке беспроводного доступа. Ниже то, что клиент ввел на коммутаторе: SwitchC(config)#interface fa0/1 SwitchC(config-if)#no spanning-tree vlan 10 SwitchC(config)# В интерфейсе они набрали no spanning-tree vlan 10, но как вы видите, что они оказались в режиме глобальной конфигурации. Нет команды для отключения остовного дерева на интерфейсе, подобного этой, поэтому коммутатор думает, что вы ввели глобальную команду для отключения остовного дерева. Коммутатор принимает команду отключения остовного дерева для VLAN 10 и возвращает вас в режим глобальной конфигурации... проблема решена! Извлеченный урок: проверьте, включено ли связующее дерево. Case #3 Давайте продолжим по другому сценарию! Та же топология... наш клиент жалуется на плохую работу. Начнем с проверки ролей интерфейсов: Посмотрите на картинку выше. Видите ли вы, что интерфейс FastEthernet 0/16 на коммутаторе B и коммутаторе C обозначены? На Коммутаторе A все интерфейсы обозначены. Как вы думаете, что произойдет, когда один из наших коммутаторов переадресует трансляцию или должен передать кадр? Правильно! У нас будет цикл ... Обычно в этой топологии интерфейсы FastEthernet 0/16 и 0/17 на коммутаторе C должны быть альтернативными портами, поскольку коммутатор C имеет худший ID моста. Так как они оба обозначены, мы предполагаем, что Коммутатор C не получает BPDU на этих интерфейсах. Так почему же остовное дерево провалилось здесь? Здесь важно помнить, что связующему дереву требуются блоки BPDU, передаваемые между коммутаторами для создания топологии без петель. BPDU могут быть отфильтрованы из-за MAC access-lists, VLAN access-maps или из-за spanning-tree toolkit? SwitchA#show vlan access-map SwitchB#show vlan access-map SwitchC#show vlan access-map Ни на одном из коммутаторов нет VLAN access maps. SwitchA#show access-lists SwitchB#show access-lists SwitchC#show access-lists Нет списков доступа... Нет port security... как насчет команд, связанных с остовным деревом? Вот что-то есть!Фильтр BPDU был включен на интерфейсах FastEthernet 0/16 и 0/17 коммутатора B. Из-за этого коммутатор C не получает BPDU от коммутатора B. SwitchB(config)#interface fa0/16 SwitchB(config-if)#no spanning-tree bpdufilter enable SwitchB(config-if)#interface fa0/17 SwitchB(config-if)#no spanning-tree bpdufilter enable Удалим настройки фильтра BPDU. Теперь вы видите, что FastEthernet 0/16 и 0/17 являются альтернативными портами и блокируют трафик. Наша топология теперь без петель... проблема решена! Извлеченный урок: убедитесь, что блоки BPDU не заблокированы и не отфильтрованы между коммутаторами. Case #4 Новая топология. Коммутатор A был выбран в качестве корневого моста для VLAN 10. Все интерфейсы являются FastEthernet каналами. После использования команды show spanning-tree vlan 10 вот, что мы видим. Все интерфейсы одинаковы, но по какой-то причине коммутатор B решил выбрать FastEthernet 0/16 в качестве корневого порта. Разве вы не согласны с тем, что FastEthernet 0/13 должен быть корневым портом? Стоимость доступа к корневому мосту ниже, чем у FastEthernet 0/16. Используем команду show spanning-tree interface, чтобы проверить информацию о spanning-tree для каждого интерфейса. Как вы можете видеть, существует только связующее дерево для VLAN 1, активное на интерфейсе FastEthernet 0/13 и 0/14. Есть несколько вещей, которые мы могли бы проверить, чтобы увидеть, что происходит: Во-первых, всегда полезно проверить, активно ли связующее дерево для определенной VLAN. Можно отключить spanning-tree с помощью команды no spanning-tree vlan X. В этом сценарии связующее дерево активно для VLAN 10, потому что мы можем видеть на FastEthernet 0/16 и 0/17. Мы знаем, что остовное дерево активно глобально для VLAN 10, но это не значит, что оно активно на всех интерфейсах. Мы можем использовать команду show interfaces switchport, чтобы проверить, работает ли VLAN 10 на интерфейсе FastEthernet 0/13 и 0/14. Это отобразит нам некоторую интересную информацию. Вы видите, что эти интерфейсы оказались в режиме доступа, и они находятся в VLAN 1. SwitchB(config)#interface fa0/13 SwitchB(config-if)#switchport mode trunk SwitchB(config-if)#interface fa0/14 SwitchB(config-if)#switchport mode trunk Давайте изменим режим интерфейсов на магистральный, чтобы трафик VLAN 10 мог проходить через эти интерфейсы. Ну вот, теперь все намного лучше выглядит. Трафик VLAN 10 теперь передается по интерфейсу FastEthernet 0/13 и 0/14, и вы видите, что интерфейс FastEthernet 0/13 теперь выбран в качестве корневого порта. Задача решена! Извлеченный урок: убедитесь, что VLAN активна на интерфейсе, прежде чем рассматривать проблемы связующего дерева. В следующей статье мы расскажем, как траблшутить проблемы с EtherChannel.
img
Группы вызовов (звонящие группы) – это объединенные под едиными правилами телефонные аппараты. Такой функционал очень удобен, когда вызов необходимо распределить между определенным пулом телефонов по заранее настроенным правилам. Например, вы хотите чтобы 2 телефона звонили одновременно при входящем звонке, или звонили поочередно – эта настройка реализуется с помощью ринг – групп. На номер группы можно позвонить с офисного IP – телефона, что делает ее функционал еще более удобным. Необходимые настройки Для создания ринг-группы в Elastix необходимо открыть следующую вкладку: PBX → PBX Configuration → Ring Groups. Вы автоматически попадёте в окно создания новой ринг-группы (скриншот ниже). Производим настройку следующих параметров: Ring-Group Number - Название ринг-группы Group description – описание, например «sales» Ring Strategy – важный пункт, так как он определяет алгоритм обзвона ринг-группы, их описания в конце статьи; Ring Time – количественная характеристика в секундах, определяет сколько по времени будет идти вызов на данную группу Extension list – список экстеншенов, на которые будет маршрутизироваться вызов. Важный момент – кроме непосредственно экстеншенов сюда можно добавить любые номера, которые настроены в исходящих маршрутах, но если номер не является экстеншеном, после него необходимо поставить # (решётку) – к примеру, 89162998979#. Так же рассмотрим остальные поля: Extension Quick Pick – инструмент для добавления экстеншенов в список, экстеншен добавится в конец списка. Announcement – голосовое или музыкальное приветствие в случае попадания вызова в данную группу Play Music on Hold – включение или выключение MoH (мелодия на удержании вызова) CID Name Prefix - описательный префикс, который будет высвечиваться при звонке на внутренние телефоны, к примеру: Sales:Igor Zamochnikov Ignore CF Settings – экстеншены, которые будут совершать попытку перевести поступающий вызов будут проигнорированы, включается галочкой. Skip Busy Agent – вызов будет пропускать экстеншен, который в данный момент участвует в разговоре Enable Call Pickup – возможность «поднять» вызов с использованием номера ринг-группы Одним из достаточно интересных параметров так же является Confirm Calls – подтверждение вызовов удаленной стороной по нажатию единицы – до момента нажатия разговор не начнется. Опция доступна только для стратегии ringall. Remote Announce – сообщение, которое будет проигрываться принимающей стороне если включена опция Confirm Calls Too-Late Announce – сообщение, которое будет проигрываться принимающей стороне, если она взяла трубку до нажатия на 1. Так же используется только вместе с включенной опцией подтверждения вызова. Call Recording - Включение записи разговоров в данной ринг-группе Destination if no answer – в данном примере по истечению таймаута вызов будет сброшен. Ниже приведен пример настроенной ринг-группы: После этого необходимо нажать Submit Changes и Apply Config. Нужно иметь в виду – номер ринг-группы становится практически тем же номером экстеншена, но с некоторым ограничениями. То есть на этот номер можно будет позвонить с телефона, указать его как цель в IVR и так далее. Теперь давайте разберемся с параметрами распределения вызовов внутри самой группы: ringall: Вызов поступает на все номера, указанные в настройках ринг-группы одновременно (настройка по умолчанию) hunt: Вызов поочередно проходит через каждый номер memoryhunt: Вызов начинается с первого номера в списке, затем звонит 1й и 2й, затем 1й, 2й и 3й, и так далее. *-prim: Режимы с данной припиской работают, как и описанные выше, с одним отличием – если первый номер в списке занят, вызов прекратится firstavailable: вызов поступает на первый незанятый канал firstnotonphone: вызов поступает на первый телефон, на котором не снята трубка random: Вызов поступает на указанные номера с определенным приоритетом так, чтобы вызовы распределялись относительно равномерно. Имитирует очередь (Queue) в те моменты, когда очередь не может быть использована.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59